

LAWRENCE

NAT I ONA L

LABORATORY

LIVERMORE

User’s Guide to WPP version

2.1

N. Anders Petersson, Bjorn Sjogreen

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
PO Box 808
Livermore, CA 94551

June 15, 2011

LLNL-SM-487431

Disclaimer This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States govern-
ment or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

Auspices Statement This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

1

Contents

1 Introduction 5

2 Getting started 7
2.1 Running WPP . 7

3 Coordinate system, units and the grid 9
3.1 Geographical coordinates . 10

4 Sources, time-functions and grid sizes 12
4.1 Sources and time-functions inWPP . 12
4.2 Predefined time functions . 13

4.2.1 Gaussian . 14
4.2.2 GaussianInt . 14
4.2.3 Ricker . 15
4.2.4 RickerInt . 15
4.2.5 Brune . 15
4.2.6 BruneSmoothed . 16
4.2.7 Liu . 17
4.2.8 Triangle . 18
4.2.9 Sawtooth . 18
4.2.10 Ramp . 18
4.2.11 Smoothwave . 19
4.2.12 VerySmoothBump . 19
4.2.13 GuassianWindow . 19

4.3 How fine does the grid need to be? . 21
4.3.1 Lamb’s problem . 22

5 The material model 24
5.1 The block command . 25
5.2 The efile command . 26
5.3 The pfile command . 27
5.4 The ifile command . 29

6 Topography 31
6.1 Gaussian hill topography . 32
6.2 Topography grid file . 32

2

6.3 Etree topography . 33

7 Mesh refinement 34

8 Attenuation 37
8.1 Viscoelastic modeling . 37

9 Output options 40
9.1 Setting the output directory . 40
9.2 Time-history at a reciever station: the sac command . 40
9.3 2-D cross-sectional data: the image command . 42
9.4 Generating a bird’s eye view of the problem domain: the gmt command 44

10 Examples 45
10.1 Lamb’s problem . 45
10.2 Examples from Lifelines project 1A01: Validation of basin response codes 46

10.2.1 The LOH.1 problem . 46
10.2.2 The LOH.2 problem . 48
10.2.3 The LOH.3 problem . 50

10.3 The Grenoble basin test case . 51
10.4 Modeling the October 2007, Alum Rock earthquake . 55
10.5 A scenario earthquake in the Caucasus region . 56

11 Keywords in the input file 62
11.1 Basic commands . 62

11.1.1 fileio [optional] . 62
11.1.2 grid [required] . 63
11.1.3 time [required] . 64
11.1.4 source [required] . 64
11.1.5 prefilter [optional] . 66

11.2 The material model [required] . 66
11.2.1 attenuation [optional] . 67
11.2.2 block . 67
11.2.3 efile . 68
11.2.4 pfile . 69
11.2.5 ifile . 70
11.2.6 material . 70
11.2.7 globalmaterial [optional] . 71

11.3 Topography and mesh refinement [optional] . 72
11.3.1 topography [optional] . 72
11.3.2 refinement [optional] . 73

11.4 Output commands [optional] . 73
11.4.1 sac [optional] . 73
11.4.2 image [optional] . 74
11.4.3 gmt [optional] . 76

11.5 WPP testing commands [optional] . 77
11.5.1 twilight . 77

3

11.5.2 testlamb . 77
11.5.3 testpointsource . 78

11.6 Advanced simulation controls [optional] . 79
11.6.1 supergrid [optional] . 79
11.6.2 boundary conditions [optional] . 79
11.6.3 developer [optional] . 80

12 File formats 82
12.1 topography . 82
12.2 pfile . 83
12.3 ifile . 84
12.4 sac . 84
12.5 image . 85

A InstallingWPP 87
A.1 Supported platforms and compilers . 87
A.2 MPI and other third party libraries . 87

A.2.1 Mac computers . 88
A.2.2 Linux machines . 88

A.3 Directory structure . 89
A.4 Compiling and LinkingWPP (without the cencalvm library) 90

A.4.1 How do I setup the make.inc file? . 91
A.5 Installing cencalvm and its supporting libraries . 91

B Testing theWPP installation 94
B.1 Method of manufactured solutions . 94
B.2 Lamb’s problem . 96

4

Chapter 1

Introduction

WPP is a computer program for simulating seismic wave propagation on parallel machines. WPP solves
the governing equations in second order formulation using a node-based finite difference approach [12].
The numerical method uses summation by parts stencils to guarentee stability of the time-stepping proce-
dure. The stability holds for heterogeneous material models on Cartesian and curvilinear grids, free surface
boundary conditions, mesh refinement interfaces with hanging nodes, and for heterogeneous visco-elastic
materials.

WPP implements substantial capabilities for 3-D seismic modeling, with a free surface condition on the
top boundary, non-reflecting far-field boundary conditions on the other boundaries, point force and point
moment tensor source terms with many predefined time dependencies, fully 3-D heterogeneous material
model specification, elastic or visco-elastic materials, output of synthetic seismograms in the SAC [6] format,
output of GMT [15] scripts for laying out simulation information on a map, and output of 2-D slices of
(derived quantites of) the solution field as well as the material model.

Version 2.1 of WPP allows the free surface boundary condition to be imposed on a curved topography.
For this purpose a curvilinear mesh is used near the free surface, extending into the computational domain
to a user specified level. The (visco-) elastic wave equation and the free surface boundary conditions are
discretized on the curvilinear mesh using the energy conserving technique described in [2]. A curvilinear
mesh generator is built into WPP and the curvilinear mesh is automatically generated from the description
of the topography. Below the curvilinear grid, the (visco-) elastic wave equation is discretized on Cartesian
meshes, which leads to a more computationally efficient algorithm.

In version 2.1 of WPP, Cartesian local mesh refinement can be used to make the computational mesh
finer near the free surface, where more resolution often is needed to resolve short wave lenghts in the
solution, for example in sedimentary basins. The mesh refinement is performed in the vertical direction and
each Cartesian grid is constructed from user specified refinement levels. In this approach, the grid size in
all three spatial directions is doubled across each mesh refinement interface, leading to substantial savings
in memory and computational effort. The energy conserving mesh refinement coupling method described
in [14] is used to handle the hanging nodes along the refinement interface.

Visco-elastic behavior can be important when modeling the dissipative nature of realistic materials,
especially for higher frequencies. Version 2.1 of WPP uses the rheological model of standard linear solid
(SLS) elements, coupled in parallel. The coefficients in each SLS are determined such that the resulting
quality factorsQp andQs, for the attenuation of P- and S-waves, become approximately constant as function
of frequency. These quality factors can vary from grid point to grid point over the computational domain and
are read in the same way as the elastic properties of the material model. The underlying numerical method
for solving the visco-elastic wave equation is described in [13].

5

The examples subdirectory of the WPP source distribution contains several examples and validation
tests. Many Matlab/octave scripts are provided in the tools directory.

Acknowledgments

Many people have contributed to the development of WPP and we would like to thank (in no particular
order) Artie Rodgers, Heinz-Otto Kreiss, Stefan Nilsson, Kathleen McCandeless, Hrvoje Tkalcic, Steve
Blair, Daniel Appelö, and Caroline Bono. This work was enabled by financial support from a Laboratory
Directed Research and Development (LDRD) project at Lawrence Livermore National Laboratory, as well
as support from the OASCR program at the Office of Science at the Department of Energy.

6

Chapter 2

Getting started

2.1 RunningWPP

WPP can be run from the UNIX prompt or from a script. Normally WPP uses one argument, which is the
name of the input file. The input file is an ASCII text file that contains a number of commands specifying the
properties of the simulation, such as the dimensions of the computational domain, grid spacing, the duration
of the simulation, the material properties, the source model, as well as the desired output. To improve
readability of this document we have used the continuation character “\” to extend long commands to the
subsequent line. There is however no support for continuation characters in WPP, so each command must
be given on one (sometimes long) line in the input file.

Since WPP is a parallel code, it is required to be run under a parallel execution environment such as
mpiexec, mpirun, or srun. With the exception of srun, which always is used on the Livermore computing
parallel machines, it is important to start WPP with the correct parallel execution tool. Also note that some
systems require you to start an mpd daemon before running any parallel programs (see mpich2-doc-user.pdf
for more info). Refer to your local system administrator for information on how parallel programs should
be started on your system.

Throughout this document we use the convention that input files have the file suffix .in. However,
WPP does not discriminate based on file extension and will gladly attempt to read an input file regardless of
its extension.

If your system is setup for using mpiexec, the command

shell> mpiexec -np 2 wpp test.in

runs WPP on 2 processes, and tells it to read input from a file named test.in. If you are using mpirun,
you would instead use the command

shell> mpirun -np 2 wpp test.in

Remark: IfWPP produces strange looking outputs where the same text is repeated several times (e.g. once
per processor), you are probably running WPP under the wrong parallel execution environment.

Running on the Livermore Computing parallel linux clusters The srun command is currently used to
run parallel jobs on LC machines. For example, the command

shell> srun -ppdebug -n 32 wpp xxx.in

7

runs WPP on 32 processors on the debug parition using xxx.in as the input file. Note that the pdebug
partition is intended for shorter jobs and is subject to both a CPU time limit and a limit on the number of
processors per job. Jobs requiring more computer resources must be submitted through the batch system,
currently using the msub command. Refer to the Livermore Computing web pages for detailed information
(https://computing.llnl.gov).

Version information (-v) Version information for theWPP executable can be obtained through -v flag:

[yorkville:˜/src/wpp/optimize_v2.1] petersson1% wpp -v
--

WPP Version 2.1
Copyright (C) 2007-2011 Lawrence Livermore National Security, LLC.

WPP comes with ABSOLUTELY NO WARRANTY; released under GPL.
This is free software, and you are welcome to redistribute
it under certain conditions, see LICENSE.txt for more details
--

Compiled: Mon May 16 14:16:18 2011
By: petersson1
Machine: yorkville.llnl.gov
Compiler: /Users/petersson1/MacPorts/bin/mpicxx
3rd party software base directory: /Users/petersson1/

--

Note that the same information is by default printed to standard out at the beginning of every run.

8

Chapter 3

Coordinate system, units and the grid

Figure 3.1: WPP uses a right handed coordinate system with the z-axis pointing downwards.

WPP uses a right-handed Cartesian coordinate system with the z-direction pointing downwards into the
medium, see figure 3.1. WPP employs MKS (meters-kilograms-seconds) units; all distances (e.g., grid
dimensions, spacing, and displacements) are in meters (m), time is in seconds (s), seismic P- and S-wave
velocities are in meters per second (m/s), densities are in kilogram per cubic meter (kg/m3), forces are in
Newton (N), and seismic moment (torque) is in Newton-meters (Nm). All angles (e.g. latitude, longitude,
azimuth, strike, dip and rake) are in degrees. The quality factors QP and QS are dimensionless.

In WPP the computational domain is rectangular in the horizontal plane,

0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax.

The topography surface
z = τ(x, y),

defines the shape of the top surface in the vertical direction. WPP can also be run without topography, in
which case τ(x, y) = 0. The computational domain is given by

0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, τ(x, y) ≤ z ≤ zmax. (3.1)

The grid command in the input file specifies the extent of the computational domain and the grid size h.
When mesh refinement is enabled, this is the grid size in the coarsest grid. The most obvious way of
specifying the grid is by providing the number of grid points in each direction as well as the grid size,

grid nx=301 ny=201 nz=101 h=500.0

9

This line gives a grid with grid size 500 meters, which extends 150 km in x, 100 km in y and 50 km in the z-
direction. Alternatively, the grid can be specified by giving the spatial range in each of the three dimensions
and explicitly specifying the grid spacing. For example,

grid x=30e3 y=20e3 z=10e3 h=500.0

results in a grid which spans 30,000 meters in x, 20,000 meters in y, and 10,000 meters in the z-direction.
The grid spacing is 500 meters, which is used to compute the number of grid points in each direction:
nx=61, ny=41, and nz=21, for a total of 52,521 grid points. Note that the number of grid points in the
different directions will be rounded to the nearest integer value according to the pseudo C-code

nx = (int)(1.5 + x/h). (3.2)

The extent in the x-direction is thereafter adjusted to

x = (nx− 1)h. (3.3)

A corresponding procedure is performed in the other coordinate directions.
The third option is to give the spatial range in each of the three dimensions and specify the number of

grid points in a particular direction:

grid x=30000 y=20000 z=10000 nx=100

In this case, the grid spacing is computed as

h = x/(nx− 1) = 303.03.

Note that no rounding needs to take place in this case, since h is a floating point number. Given this value
of h, ny and nz are computed using formulas corresponding to (3.2) giving ny=34 and nz=67, for a total of
227,800 grid points. Again, the extents in the y and z-directions are adjusted corresponding to (3.3). The
syntax for the grid command is given in Section 11.1.2.

3.1 Geographical coordinates

WPP supports geographical coordinates as an alternative way of specifying spatial locations, see Figure 3.2.
The location of the origin of the Cartesian coordinte system is specified in the grid command, and if no
location is given it defaults to latitude 37 degrees (North), longitude -118 degrees (West), with a 135 degree
azimuthal angle from North to the x-axis. The vertical coordinate is zero (z = 0) at mean sea level. The
latitude (φ) and longitude (θ) are calculated using the approximative formulae (where lat, lon, az, φ, and θ
are in degrees)

φ = lat+
x cos(α)− y sin(α)

M
, α = az

π

180
, (3.4)

θ = lon+
x sin(α) + y cos(α)

M cos(φπ/180)
, (3.5)

andM = 111, 319.5 meters/degree1. You can change the location and orientation of the grid by specifying
the latitude and longitude of the grid origin, and the azimuthal angle between North and the x-axis. For
example:

1Note thatM/60 = 1, 855.325 meters/minute, which corresponds to one minute of arc of longitude along the Equator on the
WGS 84 ellipsoid. This distance is also known as a geographical mile and is approximately equal to a Nautical mile (1,852 meters).

10

Figure 3.2: Geographical coordinates inWPP.

grid h=500.0 x=30000.0 y=20000.0 z=10000.0 lat=39.0 lon=-117.0 az=150

sets the origin of the grid to latitude 39 degrees (North), longitude -117 degrees (West), and azimuthal angle
150 degrees.

11

Chapter 4

Sources, time-functions and grid sizes

4.1 Sources and time-functions inWPP

WPP solves the elastic (or visco-elastic) wave equation in second order formulation,

ρutt = ∇ ·T + F(x, t), x in Ω, t ≥ 0,

u(x, 0) = 0, ut(x, 0) = 0, x in Ω,

where ρ is the density, u(x, t) is the displacement vector, and T is the stress tensor. The computational
domain Ω is the box shaped region of equation (3.1). By default, a free surface (zero traction) boundary
condition is enforced along the top boundary,

T · n = 0, z = τ(x, y), t ≥ 0,

where n is the unit normal of the z = τ(x, y) surface. A super-grid damping layer surrounds the computa-
tional domain on all other sides of the computational domain.

The forcing term F consists of a sum of point forces and point moment tensor source terms. For a point
forcing we have

F(x, t) = g(t, t0,ω)F0

Fx

Fy

Fz

δ(x− x0),

where x0 = (x0, y0, z0) is the location of the point force in space, and g(t, t0,ω) is the time function, with
offset time t0 and frequency parameter ω. The (Fx, Fy, Fz)T vector holds the Cartesian components of the
force vector, which is scaled by the force amplitude F0.

For a moment tensor source we have

F(x, t) = g(t, t0,ω)M0M ·∇δ(x− x0), M =

Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz

.

In this case the seismic moment of the moment tensor isM0, otherwise the notation is the same as for a point
force. Note that the moment tensor always is symmetric. A convenient way of specifying moment sources

12

is by using the dip, strike, and rake angles (see Section 11.1.4 for syntax) defined in Aki and Richards [1].
In this case, the total seismic moment

∑

M0 [Nm] is related to the moment magnitude by the formula

MW =
2

3

[

log10

(

∑

M0

)

− 9.1
]

.

After parsing all source commands in an input file,WPP outputs the moment magnitude using this formula.
This information is given right before the time-stepping is started and looks like this:

Total seismic moment (M0): 1.7162e+17 Nm
Moment magnitude (Mw): 5.42305
Number of sources 542

Note that the calculation of the seismic moment and magnitude assume that all sources are specified in terms
of dip, strike, and rake angles. This guarentees that the matrixM is properly normalized.

For moment tensor sources, the function g(t) is called the moment history time function, while its
time derivative g′(t) is known as the moment rate time function. WPP calculates the displacements of the
motion corresponding to the moment history time function g(t). However, since the material properties
are independent of time, the equations solved by WPP also govern the velocities when the time function is
replaced by g′(t), i.e., the corresponding moment rate time function. For example, if the solution calculated
with the GaussianInt time function represents the displacements of the motion, the solution calculated
with the Gaussian time function corresponds to the velocities of the same motion. Hence, if you are
primarily interested in calculating velocities, you can reduce the amount of post processing by using the
corresponding moment rate time function in the source term(s).

Note that most first order formulation codes (such as E3D) are based on the velocity-stress formulation
of the elastic wave equation. These codes use the moment rate time function (i.e., the Gaussian time
function in the above example) and solve for the velocities of the motion.

InWPP the forcing is specified in the input file using the source command. There needs to be at least
one source command in the input file in order for anything to happen during the simulation. Complicated
source mechanisms can be described by having many source commands in the input file. An example with
one source command is:

source x=5000 y=4000 z=600 m0=1e15 mxx=1 myy=1 mzz=1 \
type=RickerInt t0=1 freq=5

which specifies an isotropic source (explosion) at the point r0 = (5000, 4000, 600) with amplitude 1015
Nm, using the RickerInt time function with offset time t0 = 1 s and frequency parameter ω = 5 Hz. This
command sets the off-diagonal moment tensor elements (Mxy,Mxz andMyz) to zero (which is the default
value).

Note that it is not necessary to place the sources exactly on grid points. The discretization of the source
terms is second order accurate for any location within the computational domain.

4.2 Predefined time functions

The source time function can be selected from a set of predefined functions described below. All functions
start from zero (limt→−∞ g(t, t0,ω) = 0) and tend to a constant terminal value, limt→∞ g(t, t0,ω) = g∞.

13

−3 −2 −1 0 1 2 30

0.5

1

1.5

t

g(
t)

Gaussian ω=3.1416, t0=0

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

t

g(
t)

GaussianInt ω=3.1416 t0=0

Figure 4.1: Gaussian (left) and GaussianInt (right) with ω = π and t0 = 0.

In seismic applications, g∞ %= 0 always corresponds to solving for the displacements of the motion, because
the solution will tend to a non-zero steady state solution for large times. This solution corresponds to the
final displacements due to a seismic event. When g∞ = 0, the solution will always tend to zero for large
times, as is expected from the velocities or accelerations of the motion due to a seismic event.

The Gaussian and the Triangle functions integrate to one (
∫

∞

−∞
g(t, t0,ω) dt = 1), while the Sawtooth,

Smoothwave, and Ricker functions integrate to zero and have maximum amplitude one. The RickerInt
function is the time-integral of the Ricker function and integrates to zero. The GaussianInt, Brune, BruneS-
moothed, and Liu functions tend to one (limt→∞ g(t, t0,ω) = 1).

The Triangle, Sawtooth, Ramp, Smoothwave, Brune, BruneSmoothed, Liu and VerySmoothBump func-
tions are identically zero for t < t0, so they will give reasonable simulation results if t0 ≥ 0. However, the
Gaussian, GaussianInt, Ricker, and RickerInt functions are centered around t = t0 with exponentially de-
caying tails for t < t0. Hence t0 must be positive and of the orderO(1/ω) to avoid incompatibilty problems
with the initial conditions. We recommend choosing t0 such that g(0, t0,ω) ≤ 10−8 for these functions.

4.2.1 Gaussian

g(t, t0,ω) =
ω√
2π

e−ω2(t−t0)2/2.

Note that the spread of the Gaussian function (often denoted σ) is related to ω by σ = 1/ω. A plot of the
Gaussian time-function is shown in Figure 4.1.

4.2.2 GaussianInt

The GaussianInt function is often used in earthquake modeling since it leads to a permanent displacement.

g(t, t0,ω) =
ω√
2π

∫ t

−∞

e−ω2(τ−t0)2/2 dτ.

GaussianInt is the time-integral of the Gaussian. A plot of the GaussianInt time-function is shown in Fig-
ure 4.1.

14

Figure 4.2: Ricker (left) and RickerInt (right) with ω = 1 and t0 = 0.

4.2.3 Ricker

g(t, t0,ω) =
(

2π2ω2(t− t0)
2 − 1

)

e−π2ω2(t−t0)2 .

A plot of the Ricker time-function is shown in Figure 4.2.

4.2.4 RickerInt

g(t, t0,ω) = (t− t0)e
−π2ω2(t−t0)2 .

RickerInt is the time integral of the Ricker function, and is proportional to the time-derivative of the Gaussian
function. The RickerInt function is sometimes used in seismic exploration simulations. Since the RickerInt
function tends to zero for large times, it does not lead to any permanent displacements. A plot of the
RickerInt time-function is shown in Figure 4.2.

4.2.5 Brune

The Brune function has one continuous derivative but its second derivative is discontinuous at t = t0,

g(t, t0,ω) =

{

0, t < t0,

1− e−ω(t−t0)(1 + ω(t− t0)), t ≥ t0.

The Brune function is often used in earthquake modeling.

15

Figure 4.3: Brune (left) and BruneSmoothed (right) with ω = 2 and t0 = −1.

4.2.6 BruneSmoothed

The BruneSmoothed function has three continuous derivatives at t = t0, but is otherwise close to the Brune
function:

g(t, t0,ω) =

0, t < t0,

1− e−ω(t−t0)

[

1 + ω(t− t0) +
1

2
(ω(t− t0))2

−
3

2x0
(ω(t− t0))3 +

3

2x20
(ω(t− t0))4 −

1

2x30
(ω(t− t0))5

]

, 0 < ω(t− t0) < x0,

1− e−ω(t−t0)(1 + ω(t− t0)), ω(t− t0) > x0.

The parameter is fixed to x0 = 2.31. Plots of the Brune and BruneSmoothed time-functions are shown
in Figure 4.3. Since the BruneSmoothed function has three continuous derivatives, it generates less high
frequency noise. Compared to the Brune function, the BruneSmoothed function gives better accuracy at a
given grid resolution

16

Figure 4.4: Liu time function with ω = 2 and t0 = 0.

4.2.7 Liu

This function was given in a paper by Liu et al., [10]. It is defined by

g(t, t0,ω) =

0, t ≤ t0,

C

[

0.7(t− t0) +
1.2

π
τ1 −

1.2

π
τ1 cos

(

π(t− t0)

2τ1

)

−
0.7

π
τ1 sin

(

π(t− t0)

τ1

)]

, t0 < t ≤ τ1 + t0,

C

[

t− t0 − 0.3τ1 +
1.2

π
τ1 −

0.7

π
τ1 sin

(

π(t− t0)

τ1

)

+
0.3

π
τ2 sin

(

π(t− t0 − τ1)

τ2

)]

, τ1 + t0 < t ≤ 2τ1 + t0,

C

[

0.3(t− t0) + 1.1τ1 +
1.2

π
τ1

+
0.3

π
τ2 sin

(

π(t− t0 − τ1)

τ2

)]

, 2τ1 + t0 < t ≤ τ + t0,

1, t > τ + t0.

The parameters are given by τ = 2π/ω, τ1 = 0.13τ , τ2 = τ−τ1, andC = π/(1.4τ1π+1.2τ1+0.3τ2π). The
Liu function resembles the Brune function, but the rise is somewhat steeper for small t− t0, see Figure 4.4.

17

Figure 4.5: Triangle (left) and Sawtooth (right) with ω = 1 and t0 = 0.

4.2.8 Triangle

For t0 < t < t0 + 1/ω,

g(t, t0,ω) =
16ω

π2

[

sin(πω(t− t0))−
sin(3πω(t− t0))

9
+

sin(5πω(t− t0)

25
−

sin(7πω(t− t0))

49

]

,

with g(t, t0,ω) = 0 elsewhere. A plot of the Triangle time-function is shown in Figure 4.5.

4.2.9 Sawtooth

For t0 < t < t0 + 1/ω,

g(t, t0,ω) =
8

π2

[

sin(2πω(t− t0))−
sin(6πω(t− t0))

9
+

sin(10πω(t− t0))

25
−

sin(14πω(t− t0))

49

]

,

with g(t, t0,ω) = 0 elsewhere. A plot of the Sawtooth time-function is shown in Figure 4.5.

4.2.10 Ramp

g(t, t0,ω) =

0, t < t0,

0.5(1− cos(π(t− t0)ω)), t0 ≤ t ≤ t0 + 1/ω,

1, t > t0 + 1/ω.

A plot of the Ramp time-function is shown in Figure 4.6.

18

Figure 4.6: Ramp (left) and Smoothwave (right) with ω = 1 and t0 = 0.

4.2.11 Smoothwave

For t0 < t < t0 + 1/ω,

g(t, t0,ω) =
2187

8
(ω(t− t0))

3 −
10935

8
(ω(t− t0))

4 +
19683

8
(ω(t− t0))

5

−
15309

8
(ω(t− t0))

6 +
2187

4
(ω(t− t0))

7,

with g(t, t0,ω) = 0 elsewhere. A plot of the Smoothwave time-function is shown in Figure 4.6.

4.2.12 VerySmoothBump

g(t, t0,ω) =

0, t < t0,

−1024(ω(t− t0))10 + 5120(ω(t− t0))9 − 10240(ω(t− t0))8

+ 10240(ω(t− t0))7 − 5120(ω(t− t0))6 + 1024(ω(t− t0))5, t0 ≤ t ≤ t0 + 1/ω,

0, t > t0 + 1/ω.

A plot of the VerySmoothBump time-function is shown in Figure 4.7.

4.2.13 GuassianWindow

g(t, t0,ω) = sin(ωt)e−(ω(t−t0)/Nc)2/2

A plot of the GaussianWindow time-function with Nc = 5 is shown in Figure 4.8. Note that Nc is specified
with the ncyc keyword, which must be given when this time function is used in the source command.

19

Figure 4.7: VerySmoothBump with ω = 0.5 and t0 = 0.

−10 −5 0 5 10−1

−0.5

0

0.5

1

t

g(
t)

GaussianWindow ω=3.14 t0=0

Figure 4.8: GaussianWindow with ω = 3.14, t0 = 0, and Nc = 5.

20

4.3 How fine does the grid need to be?

The most difficult parameter to choose when preparing the input file is probably the grid size h. It is
extremely important to use a grid size which is sufficiently small, because you must resolve the waves that
are generated by the source. On the other hand you don’t want to use an unnecessarily small grid size,
because both the execution time and the memory requirements increase with decreasing grid size.

The number of grid points per shortest wavelength, P , is a normalized measure of how well a solution
is resolved on the computational grid. Since the shear waves have the lowest velocities and a shorter wave
length than the compressional waves, the shortest wave length Lmin can be estimated by

Lmin =
minVs

fmax
,

where Vs is the shear velocity of the material and fmax is the largest significant frequency in the time
function g(t). Hence the number of grid points per wave length equals Lmin/h, which is given by

P =
minVs

h fmax
. (4.1)

Note that h needs to be made smaller to maintain the same value of P if either Vs is decreased or if the
frequency is increased. In formula (4.1), minVs is found from the material properties and h is determined
by the input grid specification. The frequency spectrum of the solution is determined by the frequency
spectrum of the time function(s) in the source term(s).

Figure 4.9 displays the absolute values of the Fourier transforms of the functions Gaussian, RickerInt,
Ricker, and the time derivative of the Brune function. Inspection of the mathematical definitions of the
Gaussian and Brune functions shows that the freq parameter specifies the angular frequency for these
functions. The relation between the fundamental frequency f0 and the freq parameter is given by

f0 =

freq, for Ricker, RickerInt, and VerySmoothBump,
freq

2π
, for Liu, Brune, BruneSmoothed, Gaussian, GaussianInt, and GaussianWindow.

(4.2)

The plots in Figure 4.9 were made with frequency parameter freq=0.25 for the Ricker and RickerInt
functions and frequency parameter freq=1.5 for the Gaussian and d/dt(Brune) functions. Hence, f0 ≈
0.25 for all functions in Figure 4.9. Note that the Fourier transform of the Brune function decays much
slower than the other functions for high frequencies. This is due to its lack of smoothness at t = t0.

It is the upper power (highest significant) frequency in the time function that shall be used in (4.1) to
estimate the number of grid points per wave length. For practical purposes fmax can be defined as the
frequency where the amplitude of the Fourier transform falls below 5 % of its max value. We have

fmax ≈

{

2.5f0, Ricker, RickerInt, Gaussian time functions,
4f0, Brune time function.

(4.3)

In other words, simulations using the Brune function are harder to resolve on the grid and need much more
grid points to give reliable results.

Our experience is thatWPP gives accurate results for

P ≥ 15,

21

Figure 4.9: Magnitude of the Fourier transform of the derivative of the Brune (dark blue), the Gaussian
(green), the RickerInt (red), and the Ricker (light blue) time-functions. Here freq=1.5 for the Gaussian
and the derivative of the Brune function, and freq=0.25 for Ricker and RickerInt.

but the exact number depends on the distance between the source and the reciever. Note that the relation
between the fundamental frequency f0 and the upper power frequency fmax in (4.3) is very important. For
other time functions, fmax can be estimated using the matlab/octave scripts fcnplot and ftfcnplot in the
tools directory. A lower number for P can be used in some practical situations. The best way of checking
the accuracy in a numerical solution is to repeat the calculation on a finer mesh, even though this approach
can become computationally expensive.

We finally remark that the ratio between the compressional and shear velocity, VP /VS , can have a
significant influence on the accuracy of surface waves, see the paper by Kreiss and Petersson [8] for details.

4.3.1 Lamb’s problem

We now compute solutions to Lamb’s problem in a material with Vp =
√
3 km/s, Vs = 1 km/s and

the density 1000kg/m3. The solution is forced downward with amplitude fz=5e13 N and with a time
function centered at time t0=25 s. For various time functions the solution is recorded at receivers 10 and
50 km from the source. At the recievers the relative error

‖uexact(t)− ucomputed(t)‖∞
‖uexact(t)‖∞

,

in the horizontal component is computed and plotted in Figure 4.10. In these calculations, the grid size
was held constant and the frequency parameter freq was varied. Note that the reported number of points
per wavelength was based on the fundamental frequency f0 instead of fmax, so the values of P should be
reduced according to (4.3)

From Figure 4.10 we see that for all of the time functions, except the Brune function, there is a decrease
in error inversely proportional to the square of the number of points per wavelength. The errors are larger

22

Figure 4.10: Relative errors for different source functions 10 (left) and 50 km (right) from the source. For
the Brune time function the error decays much slower than for the other time functions. Here, the number
of points per wavelength (P) was based on the fundametal frequency f0 instead of fmax, so the values of P
should be divided by 2.5 for GaussianInt, Gaussian, RickerInt, and Ricker. For Brune, P should be divided
by 4.

for the Brune function since its spectrum decays much slower due to its discontinuous second derivative at
t = t0. The difference in the error levels between the left and the right sub-figures are due to the fact that
errors in the numerical solution accumulate as the solution propagates away from the source. For a single
harmonic wave, and a second order accurate finite difference method, the number of points per wavelength
required to achieve a certain error is proportional to the square root of the number of wavelengths the wave
propagates (see Chapter 3 in [7] for a detailed discussion). Thus, to get the same accuracy at five times the
distance from the source, we need to use about

√
5 ≈ 2.24 times more points per wave length. This could

be achived by reducing the grid size by a factor 2.24 in each direction, resulting in a factor of 11.1 times
more grid points and an increase in CPU time by a factor 25.

23

Chapter 5

The material model

The elastic material model inWPP is defined by the values of the density, ρ, the compressional velocity, Vp,
and the shear velocity, Vs, at each grid point. These values can be specified by the block command (§ 5.1),
the efile command (§ 5.2), the pfile command (§ 5.3), the ifile command (§ 5.4), or by a combination of
them. It is also possible to use a visco-elastic material model. This is described in chapter 8.

Note that WPP uses a single layer of ghost points outside the computational domain (as defined by the
grid command). The material properties must therefore be defined for the computational domain padded by
one layer of ghost points. Note, however, that the material model does not need to be defined above the free
surface. Material properties at those ghost points are instead assigned by extrapolation from the interior of
the domain.

It is important to note that the order within the material commands (block, pfile, efile, and ifile) does
matter (unlike all other commands) in that the priority of the material command increases towards the end
of the input file. Hence, a material command in the input file can be completely or partially overridden by
subsequent material commands.

In the block, pfile, and ifile commands, material properties are assigned based on the depth below the
free surface. This means that the internal material model depends on the topography, but the material
properties along the free surface will always be the same, independent of the elevation of the topography
model. For the efile command, material properties are defined as functions of elevation relative to mean sea
level (z = 0). Here the topography information is embedded in the material description. If you combine
the efile command with a planar topography, a linear mapping is constructed before the material properties
are assigned. In the top (finest) Cartesian grid, the properties at the free surface are thus mapped to the top
grid surface (z = 0), and the bottom grid surface (with z = zN) is assigned material properties for elevation
−zN . Elevation values at intermediate grid points follow from the linear mapping. Subsequent (coarser)
Cartesian grids are not effected by this mapping procedure.

After reading all material commands in the input file and assigning material properties to the computa-
tional grid, WPP outputs general information about the ranges in the material model. For a purely elastic
material, the output looks like

----------- Material properties ranges ---------------
1590 kg/mˆ3 <= Density <= 3300 kg/mˆ3
768 m/s <= Vp <= 7790 m/s
500 m/s <= Vs <= 4420 m/s
1.536 <= Vp/Vs <= 4.48
3.975e+08 Pa <= mu <= 6.44701e+10 Pa

24

1.4282e+08 Pa <= lambda <= 7.13863e+10 Pa
--

It is always a good idea to check that these numbers are reasonable before proceeding with the simulation.
We also recommend inspecting the material model along a few image planes.

5.1 The block command

The block command can be used to specify material properties in rectangular volumes of the computational
domain, either with constant values or linear vertical gradients. By combining the block command with the
sub-region options we can define a material model composed of three layers:

block vp=4000 vs=2500 rho=2000
block vp=6000 vs=3500 rho=2700 z1=15000
block vp=8000 vs=4500 rho=3300 z1=35000 z2=100000

In this case the top layer has a thickness of 15 km, the middle layer 20 km and the lower layer 65 km. Because
these block commands do not specify horizontal coordinates, the values extend to the grid boundaries in both
horizontal directions. To add a box shaped inclusion of a new material we could add the following line

block vp=3000 vs=2000 rho=1000 \
x1=4000 x2=8000 y1=3000 y2=7000 z1=10000 z2=70000

Figure 5.1: Examples of material models specified with the block command.

To the left in Figure 5.1 an image slice of Vp through x = 50, 000 is displayed.
The following example combines several block commands used to generate the material model displayed

to the right in Figure 5.1:

block vp=8000 vs=4500 rho=3300 vpgrad=-0.01
block vp=3000 vs=2000 rho=1000 \

x1=1e4 x2=9e4 y1=1e4 y2=9e4 z1=1e4 z2=9e4 vpgrad=0.02
block vp=4000 vs=2500 rho=2000 \

x1=15e3 x2=85e3 y1=15e3 y2=85e3 z1=15e3 z2=85e3
block vp=6000 vs=3500 rho=2700 \

25

Figure 5.2: The geographical extent of the etree models for Northern California and the San Francisco bay
area.

x1=15e3 x2=85e3 y1=15e3 y2=85e3 z1=45e3 z2=55e3
block vp=6000 vs=3500 rho=2700 \

x1=15e3 x2=85e3 z1=15e3 z2=85e3 y1=38e3 y2=45e3

5.2 The efile command

The efile command is used to read in material properties from an etree database file. Etree databases use
an oct-tree data structure which allows material properties to be represented with finer spatial resolution
near the surface. Topography and bathymetry information is included in the database. The same etree
database file can be used independently of the grid size, so there is no need to have a one-to-one mapping
between the etree model and the computational grid. Unfortunately, it takes a major effort to develop an etree
database file, and we currently only have access to material data for Northern California and the extended
San Francisco bay area. This model was developed by the USGS and can currently be accessed from
http://earthquake.usgs.gov/regional/nca/3Dgeologic. Be aware that the database is
rather large and can take a very long time to download. The geographical extent of the etree model is given
in Table 5.1, which also is shown on a map in Figure 5.2.

In the etree database, material properties are stored as functions of geographical coordinates (latitude,
longitude, elevation). WPP uses formulas (3.4)-(3.5) to determine the geographical coordinates for each grid
point before it obtains the material properties from the data base. Internally to WPP, the cencalvm software
library is used to query the etree database, which in turn relies on additional libraries. Hence, before the efile
command can be used, the corresponding software libraries must be installed and WPP must be configured
to use them, see Section A for details.

26

Detailed Model
Corner Longitude Latitude
SE -120.64040 37.04718
SW -121.91833 36.31746
NW -123.85736 38.42426
NE -122.56127 39.17461

Regional Model
Corner Longitude Latitude
SE -118.944514 36.702176
SW -121.930857 35.009018
NW -126.353173 39.680558
NE -123.273199 41.48486

Table 5.1: Geographical extent (NAD27 projection) for the central California velocity models. Both models
are defined down to 45 km depth. See http://www.sf06simulation.org/geology/velocitymodel for details.

It is important to note the bounds of the geographical region in the database. Assuming the computa-
tional domain is contained within the bounds of the database, it is easy to set up the material model in the
input file:

grid x=100e3 y=100e3 z=40e3 lat=38.0 lon=-121.8 az=144 h=1000
efile etree=/p/lscratchd/andersp/USGSBayAreaVM-08.3.0.etree

To verify that the computational domain is inside the etree data base, we recommend checking the geograph-
ical coordinates on a map during the construction of the input file. We often use the Google Earth program
for this purpose. In the case when the computational domain is larger than the region covered by the efile, a
block command can be used to assign material properties to grid points outside of the efile region:

grid x=300000 y=300000 z=60000 lat=38 lon=-121.5 az=135 nx=100
block vp=8000 vs=4000 rho=1000 rhograd=0.5
efile etree=/p/lscratchd/andersp/USGSBayAreaVM-08.3.0.etree

However, sharp jumps in material properties can lead to significant scattering of seismic waves. In some
cases, better results can be obtained by reducing the size of the computational domain to match the extent
of the etree region.

To enable use of the extended SF model, the extended etree file must also be downloaded and then added
to the efile command line (file names have been shortened for improved readability):

efile etree=USGSBayAreaVM.etree xetree=USGSBayAreaVMExt.etree

5.3 The pfile command

The pfile command can be used to assign material properties based on depth profiles on a lattice. A pfile
contains the values of the model features (P-velocity, S-velocity, density, and Q-factors) as function of depth
at points on an equally spaced latitude-longitude lattice. The number of grid points in the depth direction
needs to be the same for all profiles, but the grid spacing does not need to be uniform and can also be
different for each profile. Material discontinuities can be represented by two material values for the same
depth value. Material layers, which only occur in a subset of the profiles, can be tapered to have zero
thickness in the remaining profiles. This is handled by introducing multiple data points with the same depth
and material values in a profile.

27

X [m]

−Z
 [m

]

P−velocity [m/s], smoothingsize=1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

X [m]

−Z
 [m

]

P−velocity [m/s], smoothingsize=3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

X [m]

−Z
 [m

]

P−velocity [m/s], smoothingsize=5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Figure 5.3: The smoothingsize parameter can be used to average out imprinting from the lat-lon lat-
tice in a coarse pfile material model. Here we show VP in the plane y = 5, 000 as function of x and
−z. In this case, smoothingsize= 1 on the top left, smoothingsize= 3 on the top right, and
smoothingsize= 5 in the bottom plot.

The lattice of the pfile does not need to have any relation to the computational mesh used inWPP and is
often much coarser. The material properties in the computational mesh are assigned values using Gaussian
averaging between the nearest NG × NG profiles in the latitude-longitude plane and linear interpolation
in the depth direction. Let the grid point have longitude θ, latitude φ and depth d. Material properties are
first linearly interpolated in the depth direction along each profile and then averaged in the latitude-longitude
plane. The number of points in the Gaussian averaging,NG, is assigned by the user in the pfile command.
For example, the following line in the input file makesWPP read a pfile named material.ppmod:

pfile filename=material.ppmod vsmin=1000 vpmin=1732 smoothingsize=4

The optional vsmin and vpmin keywords are used to assign minimum threshold values for the P - and
S-velocities, respectively. Here, smoothingsize=4 means that NG = 4 in the Gaussian averaging. A
larger value of NG (≥ 5) is particularily useful to avoid staircasing imprints when the computational grid
is much finer than the pfile lattice, see Figure 5.3. The smoothingsize keyword can be assigned any
number greater than or equal to one.

WhenNG is odd, the Gaussian averaging starts by finding the closest grid point on the latitude-longitude

28

lattice, (φi, θj). The material property c (ρ, Vp, Vs, etc.) is assigned by the formula

c(φ, θ) =

∑i+Q
m=i−Q

∑j+Q
n=j−Q cm,nωm,n

∑i+Q
m=i−Q

∑j+Q
n=j−Q ωm,n

, Q =
NG − 1

2
, (5.1)

where the weights are given by

ωm,n = e−[(φm−φ)2+(θn−θ)2]/α2

, α =
NG∆lat

2
√

− log 10−6
,

and the grid size in the latitude-longitude lattice is ∆lat. This choice of α makes the weights ωm,n < 10−6

for points that are further from (φm, θn) thanNG∆lat/2, which justifies the truncation of the series in (5.1).
A similar procedure is used for even values of NG, but in this case the averaging formula (5.1) is centered
around the nearest cell center on the latitude-longitude lattice.

Data files for the pfile command are written in an ASCII text format, see Section 12.2.

5.4 The ifile command

The ifile command reads a file holding the depth to material interface surfaces. The material properties
between each pair of material surfaces must be defined by the material command. The depth must be
non-negative. Zero depth corresponds to the topography. Material surfaces are specified on a regular lattice
in gegraphic coordinates. The unit for depth is meters, while latitude and longitude are in degrees. The
ifile command may be combined with other material specifications and it is not necessary that the lattice in
geographical coordinates covers the horizontal extent of the computational domain.

Let Nmat ≥ 1 material surfaces be known at longitudes

φi, i = 1, 2, . . . , Nlon,

and latitudes
θj , j = 1, 2, . . . , Nlat,

Note that the latitudes and the longitudes must either be strictly increasing or strictly decreasing, but the step
size may vary. Also note that the lattice points are independent of those in the topography command.

The material surfaces should be given on the regular lattice

dq,i,j = depth to surface number q at longitude φi, latitude θj .

The material surfaces correspond to material properties in the following way. At longitude φi, latitude θj
material number 1 (as defined by the material command) occupies depths 0 ≤ d ≤ d1,i,j . Material number
2 occupies depths d1,i,j ≤ d ≤ d2,i,j , and so on. If d1,i,j = 0, material number 1 is not used. Similarily,
material number k > 1 is not used if dk−1,i,j = dk,i,j . Material properties are only defined for depths down
to the last surface, i.e.,

0 ≤ d ≤ dNmat,i,j .

If the computational domain extends below the last material surface, it is necessary to use other commands
to define the material properties in those regions.

The material properties can have a constant, linear, quadratic, and square root dependence of depth. For
example, the most general dependence for density is

ρ(d) = ρk,0 + ρk,1d+ ρk,2d
2 + ρk,1/2

√
d, dk−1,i,j ≤ d < dk,i,j .

29

Bi-linear interpolation in longitude and latitude is used to define the material surfaces in between the data
points. Note that only constant values are supported for the quality factors (QP and QS) within each mate-
rial.

An example that uses an ifile material description is discussed in Section 10.3. The ifile file format
is described in Section 12.3.

30

Chapter 6

Topography

The topography command in WPP is used to specify the shape of the top surface of the computational
domain,

z = τ(x, y).

Three different topography descriptions are currently implemented in WPP: a Gaussian hill (§ 6.1), a
latitude-longitude grid file (§ 6.2), or topography from an Etree data base (§ 6.3).

A curvilinear grid is automatically constructed between the topography surface and a user specified
depth z =zmax. If no topography command is present in the input file, the top surface is taken to be the
plane z = 0, and no curvilinear grid is constructed. If the topography surface z = τ(x, y) varies between
τmin ≤ z ≤ τmax (z is positive downwards), the grid generation usually works well if

zmax ≥ τmax + 2(τmax − τmin), (6.1)

After reading the topography,WPP prints out the min and max z-coordinates, as well as the specified value
of zmax,

***Topography grid: min z = -1.1443e+03, max z = 1.0929e+03, \
top Cartesian z = 6.000000e+03

In this case, which corresponds to the topography shown in Figure 6.1,

τmin = −1144.3, τmax = 1092.9,

and zmax= 6000. We have τmax + 2(τmax − τmin) = 5567.3, which satisfies (6.1).
Except for the Gaussian hill topography, the topography surface is smoothed by a Jacobi iteration before

the curvilinear grid is generated,. The purpose of the smoothing is to ensure that the variations in topography
can be resolved on the computational grid. By default, 10 iterations are performed and this gives a satisfac-
tory result in many cases. It is possible to change the number of iteration by using the smooth option in
the topography command. You can inspect the result of the smoothing by saving the top grid surface in an
image file,

image mode=grid z=0 cycle=0 file=test

Note that the z coordinate (positive downwards) is saved on a grid image file, while the elevation (positive
upwards) of the raw (before smoothing) topography is saved on a topo image file.

31

Longitude

La
tit

ud
e

−122.6−122.4−122.2 −122 −121.8−121.6−121.4−121.2
36.8

37

37.2

37.4

37.6

37.8

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Figure 6.1: Topography and bathymetry in the vicinity of San Jose, south of San Francisco. The coastline is
outlined by a thicker black line. Note the deep water in the Monterey Canyon, near the bottom corner of the
computational domain.

6.1 Gaussian hill topography

The simplest type of topography is a Gaussian hill, which allows the user to place one Gaussian hill at a
specified location in the (x, y)-plane. The user can adjust the amplitude of the hill as well as its spread in
the x and y-directions. The Gaussian hill topography command has the following syntax:

topography input=gaussian zmax=7.5 gaussianAmp=2.4 \
gaussianXc=3.6 gaussianYc=2.4 \
gaussianLx=0.25 gaussianLy=0.3

Note the zmax option, which tellsWPP to extend the curvilinear grid to z = 7.5. The most common use of
the Gaussian hill topography is for testing, see for example the input scripts in examples/twilight:

gauss-twi-1.in gauss-twi-2.in gauss-twi-3.in

6.2 Topography grid file

The topography can be given on a regular lattice in geographical (lat-lon) coordinates. This approach works
well together with the block, pfile, and ifile material commands. When the material is described by
an efile command, it is better to setup the topography from the same etree database, see Section 6.3.

To setup the topography for the Grenoble basin test case described in Section 10.3, you give the com-
mand

32

topography input=grid file=grenobleCoarse.topo zmax=3000 order=2

The file grenobleCoarse.topo holds the elevation (in meters) relative to mean sea level and must
conform to the simple ASCII text format described in Section 12.3. In the above case, a curvilinear grid
is constructed between the topography surface and z = 3000, and the order=2 option specifies a second
order polynomial stretching in the curvilinear mapping function. The topography is shown in Figure 6.2.

Longitude

La
tit

ud
e

5.6 5.7 5.8 5.9 6

45.05

45.1

45.15

45.2

45.25

45.3

45.35

500

1000

1500

2000

2500

Figure 6.2: Topography in the vicinity of Grenoble, France.

6.3 Etree topography

The Etree data bases for the San Francisco bay area and Northern California contain topographic informa-
tion. You can setup the computational grid to follow this topography by using the commands

topography input=efile zmax=6e3 order=2
efile query=MAXRES \

etree=/Users/petersson1/src/wpp/tests/USGSBayAreaVM-08.3.0.etree

Here, the topography command tells WPP to read the topography from the Etree specified by the efile
command. Hence, the topography command must be accompanied by an efile command. The order=2
option specifies the type of stretching to use when making the curvilinear grid. A higher value makes the
curvilinear grid smoother near the bottom, but can cause a larger variation in grid size near the top. The
zmax=6e3 option tells WPP to extend the curvilinear grid down to z = 6000.

33

Chapter 7

Mesh refinement

The refinement command in WPP enables the user to locally refine the computational mesh in areas where
finer resolution is needed, i.e., where the wave speed is small. In order to maintain a constant resolution in
terms of the number of grid points per wavelength for a given frequency (see Equation (4.1)), the grid size
should be adjusted such that ratio Vs/h becomes approximately constant over the computational domain.
In WPP, we use a composite grid approach consisting of a set of structured component grids with hanging
nodes on the grid refinement interfaces. This allows the grid resolution to follow the main variations in
wave speed, and gives ideal wave propagation properties in each component grid. To guarentee stability of
the numerical scheme, an energy conserving coupling approach is used to couple the solution across grid
refinement interfaces, see [14] for details.

When using mesh refinement, the extent of the computational domain is determined by the grid com-
mand, which also specifies the grid size in the coarsest component grid,

grid h=2000 x=40000 y=40000 z=40000

The two refinement commands

refinement zmax=30000
refinement zmax=2000

specify two mesh refinement interfaces: z1 = 30000, and z2 = 2000. As a result, the composite grid
contains three component grids, where the coarsest component has grid size h = 2000 and covers the bottom
of the computational domain: z1 ≤ z ≤ 40000. Next refinement grid has half the grid size (h = 1000) and
covers z1 ≤ z ≤ z2. The grid size in the third component is another factor of two smaller (h = 500) and
covers the top of the computational domain: z2 ≤ z ≤ 0. The composite grid is shown in Figure 7.1, where
the grid is plotted in the vertical x = 20000 plane. Note that refinement grids are aligned in the sense that
every second grid point coincides with a grid point in the next coarser grid.

Mesh refinement can also be used together with topography. Here we use an example from the Alum
Rock simulation described in 10.4. The composite grid is setup with the commands

grid x=100e3 y=100e3 z=40e3 lat=38.0 lon=-121.8 az=144 h=1000
refinement zmax=10e3
refinement zmax=7000
topography input=efile zmax=6e3 order=2
efile query=MAXRES vsmin=500 vpmin=768 \

etree=/p/lscratchd/andersp/USGSBayAreaVM-08.3.0.etree

34

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0 x 104

y

−z

Figure 7.1: Composite grid with two mesh refinement interfaces and three Cartesian component grids.

Here the base grid, which is always is Cartesian, has grid size h = 1000 and covers 10000 ≤ z ≤ 40000.
Next Cartesian grid has half the grid size (h = 500) and covers 7000 ≤ z ≤ 10000. The grid size in the
finest Cartesian component grid is reduced by another factor of two, which gives h = 250. This component
extends to the bottom of the curvilinear grid, i.e., 7000 ≤ z ≤ 6000. The vertical extent of the curvilinear
grid is specified by the zmax=6000 option in the topography command, i.e., the curvilinear grid covers
the domain between z = 6000 and the topography surface, z = τ(x, y). In the horizontal directions, the
grid size in the curvilinear grid is the same as in the finest Cartesian grid. The number of grid points in
the vertical direction is choosen such that the average vertical grid size is the same as the grid size in the
horizontal directions. A portion of the computational grid is shown in the vertical cross section x = 50000,
see Figure 7.2.

After constructing the computational grid, WPP outputs information about the number of grid points in
each component grid. For the above example, we get

Global grid sizes (without ghost points)
Grid h Nx Ny Nz Points

0 1000 101 101 31 316231
1 500 201 201 7 282807
2 250 401 401 5 804005
3 250 401 401 25 4020025

Total number of grid points (without ghost points): 5.42307e+06

Note that most grid points are in grids number 2 and 3, with grid size h = 250. A little further down in the
output file,WPP, provides information about the resolution in terms of grid points per wave length:

***** PPW = minVs/h/maxFrequency ********

35

0 0.5 1 1.5 2 2.5
x 104

−20000

−15000

−10000

−5000

0

5000

−z

y

Figure 7.2: A composite grid with two mesh refinement interfaces and topography. In this case there are
three Cartesian components and one curvilinear grid following a non-planar topography.

g=0, h=1.000000e+03, minVs/h=3.29 (Cartesian)
g=1, h=5.000000e+02, minVs/h=6.16 (Cartesian)
g=2, h=2.500000e+02, minVs/h=12.04 (Cartesian)
g=3, h=2.500000e+02, minVs/h=2 (curvilinear)

As is common in seismic applications, the material velocities are the lowest near the free surface, i.e., in
grid number 3 in this case. From this information, we can estimate the highest frequency that can be reliably
propagated on this mesh. To get P = 15 grid points per wave length, we can use a maximum frequency of

fmax = min
VS

hP
=

2

15
≈ 0.13Hz.

36

Chapter 8

Attenuation

8.1 Viscoelastic modeling

WPP implements a linear viscoelastic material model by superimposing n standard linear solid (SLS) mech-
anisms, leading to the governing equations

ρ
∂2u

∂t2
= L(λ0, µ0)u−

n
∑

ν=1

L(λν , µν)ū
(ν) + F, x ∈ Ω, t ≥ 0, (8.1)

where the spatial operator is

L(λ, µ)u =: ∇(λ(∇ · u)) +∇ · (2µD(u)) , D(u) =
1

2

(

∇u+∇uT
)

. (8.2)

The memory variables, ū(ν), in (8.1) are governed by the differential equations

1

ων

∂ū(ν)

∂t
+ ū(ν) = u, x ∈ Ω, t ≥ 0, (8.3)

for ν = 1, 2, . . . , n, where ων > 0 are the relaxation frequencies. For more details on visco-elastic modeling
and the numerical method used by WPP, we refer to the paper by Petersson and Sjogreen [13] and the
references therein.

There are three components in each of the vector variables u and ū(ν), ν = 1, 2, . . . , n, resulting in
3 + 3n differential equations for as many dependent variables. Hence, visco-elastic modeling will require
more memory and more CPU-time, compared to the purely elastic case.

The material parameters µν and λν , as well as the relaxation frequencies ων are determined by Emmerich
and Korn’s [5] least-squares procedure. In this approach, the material parameters are selected such that the
quality factors QS and QP become close to constant over a frequency range

ωmin ≤ ω ≤ ωmax.

Because the computational cost of viscoelastic modeling increases with the number of mechanisms, n, it
is desirable to use the smallest value of n that gives acceptable accuracy in the approximation of Q(ω).
In Figure 8.1, we present Q(ω) when the material coefficients are chosen to approximate Q = 100 in the
frequency band ω ∈ [1, 100]. Clearly, n = 2 provides inadequate modeling of a constant Q over two
decades in frequency, but n = 3 gives a much better approximation. Increasing n further only leads to

37

Figure 8.1: Actual quality factor Q(ω) approximating Q0 = 100 in the frequency band ω̃ ∈ [1, 100], for
different numbers of viscoelastic mechanisms.

small improvements. It is interesting to note that in all models, Q(ω) grows rapidly for ω > ωmax. Hence
the viscoelastic model does not provide significant damping of higher (poorly resolved) frequencies in the
numerical solution, and does not act as an artificial dissipation.

Wave propagation in visco-elastic materials is dispersive, i.e., the phase velocity of a wave depends on
its frequency. Figure 8.2 illustrates that the frequency dependence on the phase velocity becomes more
pronounced when Q gets smaller. Also note that the phase velocity grows approximately linearly on a
logarithmic scale in ω, throughout the frequency band [ωmin,ωmax]. Outside this band, the phase velocity
tends to constant values. Due to the dispersive nature of visco-elastic materials, it is necessary to specify the
reference frequency, ωr, at which the phase velocities are specified.

In WPP, visco-elastic modeling is enabled by the attenuation command. For example, the com-
mand

attenuation nmech=3 phasefreq=2.5 maxfreq=10

enables visco-elastic modeling with three SLS mechanisms, tuned for the max frequency fmax = 10 Hz,
such that the phase velocities are valid at the reference frequency fr = 2.5 Hz. For simplicity, the lower
frequency in the modeling is always two orders of magnitude smaller than the max frequency,

fmin =
fmax

100
.

Instead of using maxfreq, the upper frequency limit can alternatively be specified through the minppw
option. In this case the material model is first evaluated to findminVS/h. The upper frequency limit is then

38

Figure 8.2: Relative phase velocity over the frequency band ω ∈ [1, 100]. Here, n = 3, and the different
colors correspond to different values of Q.

calculated through the relation P = minVs/(hf), i.e.,

fmax =
1

Pmin
min

Vs

h
, fmax = maxfreq, Pmin = minppw.

The syntax for using minppw is given by

attenuation nmech=3 phasefreq=2.5 minppw=5

After the input file has been parsed,WPP outputs basic information about the attenuation modeling:

*** Attenuation parameters calculated for 3 mechanisms,
max freq=2.000000e+00 [Hz], min_freq=2.000000e-02 [Hz], \
velo_freq=1.000000e+00 [Hz]

Note that max_freq = ωmax/(2π), etc.

39

Chapter 9

Output options

9.1 Setting the output directory

The fileio command can be used to specify the directory where WPP writes its output files. If the directory
does not exist, WPP attempts to create it for you. The fileio command may also be used to set the level of
diagnostic messages (verbose) and how often the time step information is printed. For example,

fileio path=wpp_dir verbose=1 printcycle=10

causes all output files to be written to the directory ”./wpp dir”, turns on some extra diagnostic messages (a
higher value gives more details), and prints the time step information every 10 time steps.

Serial and Parallel file systems Some parallel machines have a dedicated parallel file system that allows
many processors to simultaneously write to the same file. These file systems are often mounted on a special
directory. By default,WPP assumes a serial file system and will only allow one processor write to the same
file at the same time. If you have access to a parallel file system, the I/O performance ofWPP can sometimes
be improved by allowing several processors to simultaneously write a file. You enable this feature by using
the pfs=1 option,

fileio pfs=1 path=/p/lscratcha/my_output_directory

Note that many parallel file systems are only accessible from dedicated directories. Enabling pfs=1without
re-directing the output to a parallel file system can causeWPP to either crash or hang.

9.2 Time-history at a reciever station: the sac command

WPP can save the time-history of the solution at a receiver station located anywhere in the computational
domain. The basic command looks like this:

sac x=100e3 y=50e3 z=0 file=sta1

Here,WPP saves the three components of the solution at the grid point that is closest to the specified (x, y, z)
location. By default, WPP saves the data using the binary Seismic Analysis Code (SAC) [6] format. In the
above case, the sac command results in three files:

sta1.x sta1.y sta1.z

40

The x,y,z files hold the solution time-history in the corresponding coordinate direction. Note that a positive
z-component corresponds to a downward motion.

The location of the reciever station can alternatively be given in geographical (latitude, longitude, depth)
coordinates. Information about the event date, time, and station name is saved in the header of a SAC file.
By default the date and time are set to the date and time at the start of the simulation; the default station
name is the name of the file. The default values of these fields can be changed by using the eventData,
eventTime, and sta options,

sac lat=38.25 lon=-122.20 depth=0 file=sta1 \
eventDate=2003/11/22 eventTime=16:17:00 sta=EKM

Note that depth specifies the depth of the reciever below the topography. To place a reciever at elevation e
relative to mean sea level (e is negative below sea level) you use the option z=−e.

By default, SAC files are written to disk every 1000 time steps, and at the end of the simulation. We
can change this frequency by using the writeEvery option. For example, to write the SAC file every 100
time steps, you would say

sac lat=38.25 lon=-122.20 depth=0 file=sta1 writeEvery=100

By default, WPP outputs the three components of the solution u(xr, t) = (ux, uy, uz)T . By using the
velocity=1 option,WPP instead outputs the three components of the time-derivative of the solution, i.e.,
the velocity if WPP is setup to solve for displacements. The nsew=1 option can also be used to tell WPP
to rotate the solution components to the East, North, and vertical (positive up) directions,

sac lat=38.25 lon=-122.20 depth=0 file=sta1 velocity=1 nsew=1

The angle between North and the x-axis is determined by the azimuth (az=...) angle in the grid command:

grid x=100e3 y=50e3 z=30e3 lat=37.5 lon=-122.0 az=135

To remind the user of what quantities are saved in a sac file, we modify the file name extensions according
to the following table:

velocity=0 velocity=1

nsew=0 .x, .y, .z .xv, .yv, .zv
nsew=1 .e, .n, .u .ev, .nv, .uv

WPP can output the time history of the divergence or the curl of the solution at the reciever station,
instead of the solution itself. The variables option governs this behavior. For example,

sac lat=38.25 lon=-122.20 depth=0 file=sta1 variables=div

will output a single file named sta1.div containing the divergence of the solution. Similarly

sac lat=38.25 lon=-122.20 depth=0 file=sta1 variables=curl

will output the three files sta1.curlx, sta1.curly, and sta1.curlz. The velocity and nsew
options also work together with divergence and curl. Setting velocity=1 will output the time derivative
of any quantity selected by the variables option. The nsew option has no effect on the scalar divergence
field, but nsew=1 will makeWPP output a representation of the curl vector in the East, North, and vertical
components. The file name extensions for the div and curl variables are

41

variables=div variables=curl

velocity=0 velocity=1 velocity=0 velocity=1

nsew=0 .div .vdiv .curlx, .curly, .curlz .vcurlx, .vcurly, .vcurlz
nsew=1 .div .vdiv .curle, .curln, .curlu .vcurle, .vcurln, .vcurlu

WPP can also output reciever time-histories in an ASCII text format,

sac lat=38.25 lon=-122.20 depth=0 file=sta1 sacformat=0 usgsformat=1

The ASCII text file holds all three components in a single file named sta1.txt. When the usgsformat=1
option is used, the file gets extension .txt independently of the nsew and velocity options. Instead the
header inside the file is modified to reflect its contents. Note that you must give the sacformat=0 option
unless you want the solution to be output in both formats.

Notes on the sac command:

• SAC files are treated in the same way on parallel and serial file systems, because the data for each
SAC file originates from one processor and is always written by that processor only.

• The binary SAC format is described in Section 12.4.

• The ASCII text format is outlined in the header of those files.

• The binary SAC files can be read by the SAC program. We also provide a matlab/octave script in
tools/readsac.m.

• The ASCII text file format can be read by the matlab/octave script in tools/readusgs.m.

9.3 2-D cross-sectional data: the image command

The image command saves two-dimensional horizontal or vertical cross-sectional data at a specified time
level. It can be used for visualizing the solution, making the images for a movie, or checking material
properties. Each image file contains a scalar field as function of the spatial coordinates in the cross-sectional
plane. The scalar field can be either a component of the solution, a derived quantity of the solution, a
material property, or a grid coordinate, All in all,WPP can output twenty-five different types of images, see
Section 11.4.2 for details.

The cross-sectional plane is specified by a Cartesian coordinate (x, y, or z). The image can be written
at a specific time step or at a specified time. Images can also be output at a fixed frequency, either specified
by a time step interval or a time interval.

For example, the command

image mode=ux y=500 file=picturefile cycle=1

tells WPP to output the x-displacement component of the solution along the vertical y = 500 plane. The
data is written to a file named picturefile.cycle=1.y=500.ux after the first time step (cycle=1).
The example

image mode=div x=1000 file=picturefile cycleInterval=100

42

outputs the divergence of the solution field in the yz-plane at the grid surface closest to x = 1000. The data
is written to the files

picturefile.cycle=100.x=1000.div
picturefile.cycle=200.x=1000.div
...

With this setup, one image file is output every 100 time steps.
Note that the divergence of the solution field does not contain shear (S) waves and the rotation (curl)

of the solution field does not contain compressional (P) waves. These options can therefore be used to
distinguish between P- and S-waves in the solution.

The hvelmax and vvelmax modes store the maximum in time of the horizontal and vertical velocity
components, respectively. As these names indicate, it is assumed that the sources in WPP are set up for
calculating displacements. The horizontal velocity is defined asmax(|uNt |, |uEt |), where uN and uE are the
displacement components in the North and East directions, respectively. The vertical velocity is |wt|, where
w is the displacement component in the z-direction. For these modes, the cycleInterval or timeInterval
options only determine how often the maxima are written to disk; the actual accumulation of the maximuma
is performed after each time step.

When WPP is run in parallel, the data that gets saved on an image file originates from all processors
that are intersected by the image plane. For horizontal image planes, this means all processors. To improve
the I/O performance, image data is first communicated to a number of dedicated image writing processors.
By default, 8 processors write each image file to disk (or all processors ifWPP is run on fewer than 8). This
number can be changed using the fileio command,

fileio nwriters=4

The above command tellsWPP to use 4 processors to write each image file. For simulations which use very
large number of grid points and many processors, care must be taken to make sure that enough memory is
available to buffer the image data before it is written to disk.

Notes on the image command:
• By default, single precision data is saved. Double precision data can be saved by using the
precision=double option.

• When topography is used, an image plane along the free surface is specified by the z=0 option.

• A mode=topo z=0 image holds the elevation (negative z-coordinate) of the raw topography. It can
only be written when topography is used.

• A mode=grid z=0 image holds the z-coordinate (negative elevation) of the grid along the free
surface, which is the actual shape of the upper surface of the computational domain.

• When topography or mesh refinement is used, vertical image planes intersect all component grids in
the composite grid. In this case, cross-sectional data from all component grids are stored on the image
file.

• The images files are written in a binary format, see Section 12.5 for details.

• We provide matlab/octave scripts for reading image files in the tools directory. The basic function
is called readimagepatch.m. A higher level interface is provided by the imageinfo.m and
plotimage.m scripts.

43

Figure 9.1: Location of the source and stations for the Barnwell simulation. This figure was generated using
the GMT command, see Section 11.4.3 for details.

9.4 Generating a bird’s eye view of the problem domain: the gmt command

The Generic Mapping Toolkit (GMT) [15] is a set of postscript image generation programs for geophysical
applications, which can be used to make plots like Figure 9.1. In the example shown here, topography
information is included as well as information on the general setup of the simulation. Note that the gmt
command causes an ASCII text file to be outputted fromWPP. This file contains a UNIX C-shell script with
commands for the gmt program, holding general information about the run such as geometric coordinates
of the computational domain as well as locations of sources and recievers. This information often needs
to be fine-tuned to suit the needs of a particular application. To have WPP write a GMT file, you give the
command

gmt file=bolinas.gmt

44

Chapter 10

Examples

This chapter describes most of the the input scripts in the directory examples. The output associated with
input file xyz.in is given in xyz.out.

10.1 Lamb’s problem

The version of Lamb’s problem [9] considered here consists of a single vertical time-dependent point force
acting downward on the surface of a homogeneous half-space. In this section, we use the analytical solution
from Mooney [11] to test the accuracy of the numerical solution.

In the following example, the elastic half-space consists of a Poisson solid (λ = µ) with S-wave velocity
Vs = 1000 m/s, P-wave velocity Vp = 1000 ·

√
3 m/s, and density ρ = 1500 kg/m3. The elastic half-space

is truncated to the computational domain

(x, y, z) ∈ [0, 8000]× [0, 8000]× [0, 4000].

The source is placed on the free surface in the center point of the horizontal plane: (4000, 4000, 0).
The time dependency of the forcing is a “RickerInt” (see Figure 4.2) with ω = 1 Hz, t0 = 2 s and
magnitude 1013 N. The above setup is created with the input file shown below, which can be found in
examples/lambtests/seismic1.in

grid nx=161 x=8000 y=8000 z=4000
time t=5.0
fileio path=seismic1-results
block vp=1.7320508076e+03 vs=1000 rho=1500
source type=RickerInt x=4000 y=4000 z=0 fz=1e13 freq=1 t0=2
Time history of solution
sac x=4000 y=5000 z=0 file=sta1

The vertical displacement at the reciever (x = 4000, y = 5000, z = 0) and the error for three grid sizes
can be found in Figure 10.1.

The waveforms are all smooth and the problem appears to be well resolved. We present the max-norm
of the errors in the vertical displacement in Table 10.1. The ratio between errors as the grid size is halved
approaches 4 for the finest grid, indicating that the numerical method and the discretization of the point force
are second order accurate. The center frequency in the RickerInt time function is f0 = 1 Hz. Following
(4.3), we estimate the highest significant frequency to be fmax = 2.5 Hz. In this case the formula for the

45

0 1 2 3 4 5 6
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time

Ve
rti

ca
l d

isp
la

ce
m

en
t

nx=161−error
nx=321−error
nx=641−error
Exact

Figure 10.1: Lamb’s problem: Vertical displacement at reciever x = 4000, y = 5000, z = 0. The black line
shows the exact solution, while the magenta, red and blue lines show the errors in the numerical solutions
with different grid resolution.

Nx h P ‖uz − Uz‖∞/‖Uz‖∞ ratio
161 50 8 1.12 · 10−1 –
321 25 16 3.54 · 10−2 3.16
641 12.5 32 9.47 · 10−3 3.74

Table 10.1: Max norm errors in the vertical displacement at reciver x = 4000, y = 5000, z = 0.

number of grid points per wave length (4.1) becomes P = 1000/(2.5h). Note that P = 16 gives a relative
max-norm error of about 3.5 percent.

10.2 Examples from Lifelines project 1A01: Validation of basin response
codes

The following examples are taken form the Lifelines project 1A01: Validation of basin response codes,
see [3]. A detailed description of the setup of the Layer over halfspace (LOH) problems can also be found
in [3]. To enable a direct comparison with those results, theWPP simulations are set up to calculate velocities
as opposed to displacements.

10.2.1 The LOH.1 problem

The LOH.1 problem, defined in the input script examples/scec/LOH.1.h50.mr.in, has a layered
material model where the top 1000 meters (z ∈ [0, 1000m]) has different properties than the rest of the

46

domain. The computational domain is taken to be (x, y, z) ∈ [0, 30000]2 × [0, 17000]. The grid size in
the base (coarsest) grid is choosen to be h = 50m and the material properties in the different layers are
described by

grid h=50 x=30000 y=30000 z=17000 extrapolate=2
block vp=4000 vs=2000 rho=2600
block vp=6000 vs=3464 rho=2700 z1=1000

The problem is forced by a single point moment source, positioned in the lower half-space. The time
function in this problem is a Gaussian (if setup as in the input file, the Gaussian source is equivalent to
using a Brune time function followed by a post processing deconvolution step, as is described in [3]). The
advantage of using the Gaussian is that no post processing is necessary before comparing to the results
in [3], and the Gaussian function produces less high wave number waves which are poorly resolved on the
computational mesh. Note that freq=16.6667 corresponds to the spread σ = 0.06 in the Gaussian time
function. The lines to setup the source and the time duration of the simulation are:

time t=9
source x=15000 y=15000 z=2000 Mxy=1 m0=1e18 t0=0.36 freq=16.6667 \

type=Gaussian

The layered velocity structure makes this problem an ideal candidate for mesh refinement. We align the
refinement level with the material discontinuity by specifying

refinement zmax=1000

As a result the grid size in the top 1000 meters (0 ≤ z ≤ 1000) will be h = 25 meters. The
extrapolate=2 option in the above grid command tells WPP to extrapolate material properties to
the ghost point and the point on the interface. This gives uniform material properties on each compo-
nent grid and allows the jump conditions across the material discontinuity to be handled accurately. The
extrapolate option should only be used when the grid interface is perfectly aligned with the material
discontinuity.

The solution is recorded in an array of receivers:

sac x=15600 y=15800 z=0 file=sac_01
sac x=16200 y=16600 z=0 file=sac_02
sac x=16800 y=17400 z=0 file=sac_03
sac x=17400 y=18200 z=0 file=sac_04
sac x=18000 y=19000 z=0 file=sac_05
sac x=18600 y=19800 z=0 file=sac_06
sac x=19200 y=20600 z=0 file=sac_07
sac x=19800 y=21400 z=0 file=sac_08
sac x=20400 y=22200 z=0 file=sac_09
sac x=21000 y=23000 z=0 file=sac_10

Numerical velocity time histories for station 10 are shown in Figure 10.2 together with a semi-analytical
solution. We conclude that most features in the solution are very well captured on this grid. As is customary
in seismology, the velocity components have been rotated to polar componenets, with the origin at the
source. The sac command outputs the ux, uy and uz-components of the velocity. These components are
rotated to radial and transverse components using the transformation,

urad = 0.6ux + 0.8uy, utran = −0.8ux + 0.6uy.

47

0 2 4 6 8 10
−2

0

2
Ra

di
al

0 2 4 6 8 10
−2

0

2

Tr
an

sv
er

se

0 2 4 6 8 10
−2

0

2

Ve
rti

ca
l

Time

Figure 10.2: LOH.1: The radial (top), transverse (middle) and vertical (bottom) velocities for receiver
number 10. Here the numerical solution is plotted in red while the semi-analytical solution is represented
by dashed black lines.

The vertical component is given by uz (positive downwards).
By using formulas (4.1)-(4.3), we can calculate the number of points per wave length for this simulation.

Since we are using a Gaussian time-function, the center frequency is f0 = 1/(2πσ) ≈ 2.6526 and we
estimate the upper power frequency to be fmax ≈ 2.5f0 = 6.6315 Hz. The material model has minVs =
2000 m/s where the grid size is h = 25 m, and we arrive at

P =
2000

25 · 6.6315
≈ 12.1.

From our discussion in Section 4.3, 12.1 points per wave length is on the low side, but visual inspection of
Figure 10.2 indicates very good agreement of the wave forms.

10.2.2 The LOH.2 problem

The geometrical setup of the LOH.2 problem is identical to that of LOH.1, but the LOH.2 problemmodels an
earthquake along a fault plane. The slip along the fault is modeled by a large number of point moment tensor

48

sources with the time dependency given by the Gaussian function with different offsets in time (depending
on distance from the hypocenter). The fault plane coincides with the y-z-plane in the computational grid.
The input files for LOH.2 can be found in examples/scec/LOH.2.h50.mr.in.

As for LOH.1, a semi-analytical solution is available for σ = 0.06 corresponding to the frequency
parameter freq=16.6667 in all source commands. This leads to the same number of grid points per
wave length as for LOH.1.

P ≈ 12.1.

In Figure 10.3, we evaluate the error in the solution at station 10, by comparing velocitiy time-histories
in the numerical solution to a semi-analytical solution. We conclude that most features in the solution
indeed are captured on this grid, in particular before time t ≈ 5.5. At later times, artificial effects of the
outflow boundary dominate the solution error. These effects are larger than in LOH.1 because the sources
are distributed in space so some sources are closer to the outflow boundary than in LOH.1.

0 2 4 6 8 10 12
−0.2

0

0.2

Ra
di

al

0 2 4 6 8 10 12
−0.2

0

0.2

Tr
an

sv
er

se

0 2 4 6 8 10 12
−0.2

0

0.2

Ve
rti

ca
l

Time

Figure 10.3: LOH.2: The radial (top), transverse (middle) and vertical (bottom) velocity components
recorded at station number 10. Here the dashed black line is a semi-analytical solution and the red line
is the numerical solution.

49

10.2.3 The LOH.3 problem

The LOH.3 problem, which adds effects of anelastic attenuation to the LOH.1 problem, is defined in the
input script examples/scec/LOH.3-n3-h50.mr.in. To reduce any artificial effects from the far-
field boundaries, we use a slightly larger computational domain compared to LOH.1,

grid h=50 x=40000 y=40000 z=20000 extrapolate=2

As before, the extrapolate=2 option means that the material properties are extrapolated to the ghost
points and the point on the interface in each component grid. This option is useful for increasing the accuracy
when a material discontinuity is perfectly aligned with a grid refinement boundary.

The visco-elastic modeling is enabled with the command

attenuation phasefreq=2.5 nmech=3 maxfreq=15

In this case, three standar linear solid mechanisms are used (nmech=3) to give a material with approx-
imately constant quality factors in the frequency band 0.15 ≤ f ≤ 15 Hz. Note that only the upper
frequency limit needs to be specified (maxfreq=15); the lower limit is always 100 times smaller (and can
not be specified). Since the visco-elastic material is dispersive, we use the phasefreq=2.5 option to
specify at what frequency the compressional and shear speeds should apply. In the description of the LOH.3
problem, see Day et al. [4], this frequency is given as 2.5 Hz.

Apart from the density and the material velocities, the material model must include the quality factors for
the attenuation of compressional (QP) and shear waves (QS). For this problem, we use the block commands

block vs=3464 vp=6000 r=2700 Qs=69.3 Qp=155.9
block vs=2000 vp=4000 r=2600 z2=1000 Qs=40 Qp=120

Similar to the LOH.1 test case, the source is of point moment-tensor type with a Gaussian time-function.
Note, however, that for LOH.3, the Gaussian has spread σ = 0.05, corresponding to the center angular
frequency ω0 = 1/σ = 20 and center frequency f0 = 20/(2π) ≈ 3.18 Hz. The source is specified by the
command

source x=20000 y=20000 z=2000 Mxy=1 m0=1e18 t0=0.2 freq=20 \
type=Gaussian

Similar to the LOH.1 problem, the layered velocity structure makes the LOH.3 problem an ideal candidate
for mesh refinement, and we use the same refinement command as before. The grid size is therefore
h = 25 meters in the top 1000 meters of the model, and h = 50 meters elsewhere.

The solution is recorded in the same array of recievers as before, but all (x, y) coordinates have been
incremented by 5000 meters to be in the same position relative to the source. Results recorded at station 10
are shown in Figure 10.4. As for the LOH.1 problem, the velocity is presented in polar components. We
conclude that the numerical solution is in very good agreement with the semi-analytical solution shown in
black.

As before we can estimate the resolution in terms of the number of grid points per shortest significant
wave length. In this case the center frequency is f0 ≈ 3.18 Hz and we estimate the upper power frequency
to be fmax ≈ 2.5f0 = 7.95 Hz. The material model has minVs = 2000 m/s where the grid size is h = 25
m, and we arrive at

P =
2000

25 · 7.95
≈ 10.06.

50

0 2 4 6 8 10
−2

0

2
Ra

di
al

0 2 4 6 8 10
−2

0

2

Tr
an

sv
er

se

0 2 4 6 8 10
−1

0

1

Time

Ve
rti

ca
l

Figure 10.4: LOH.3: The radial (top), transverse (middle) and vertical (bottom) velocities at receiver number
10. Here the numerical and semi-analytical solutions are plotted in red and black, respectively.

10.3 The Grenoble basin test case

This example uses realistic topography and mesh refinement to model a scenario earthquake near Greno-
ble, France. The WPP input file for this simulation is called Grenoble.in and can be found in the
examples/ifile directory.

Grenoble is located in a Y-shaped valley in the foothills of the Alps. The extent and geographical
orientation of the computational domain is described by

grid x=40e3 y=43e3 z=40e3 lon=5.52 lat=45.01 az=0 h=200

Hence, the x-axis points in the direction of North (az=0) and the y-axis is directed due East. With this
orientation, the lon and lat options specify the location of the South-West corner of the computational
domain.

To setup the topography we give the command

topography input=grid file=grenobleCoarse.topo zmax=3000 order=2

The file grenobleCoarse.topo holds the elevation (in meters) above mean sea level on a regular grid
in geographical (lat-lon) coordinates. A plot of the topography can be found in Figure 6.2. The material

51

properties are described by a heterogeneous model with granite and sediment. The properties of the granite
are assumed to only depend on depth, and are setup using block commands,

block vp=5600 vs=3200 rho=2720
block vp=5920 vs=3430 rho=2720 z1=3e3
block vp=6600 vs=3810 rho=2920 z1=27e3
block vp=8000 vs=4450 rho=3320 z1=35e3

Since the material commands are read in the order they occur, the properties of the top 3000 meters are
described by the first block command, and the subsequent block commands describe the properties
deeper into the earth because their extent is restricted by the z1 option (note that z1 and z2 correspond to
depth in the presence of topography).

The geometry of the sedimentary basin is described by the ifile command,

ifile filename=bedrock_surface.dat

In this case, the file bedrock_surface.dat holds the depth of the sedimentary basin on a regular grid
in geographical (lon-lat) coordinates. Note that this grid is unrelated to the computational grid and the grid
used in the topography file. The format of this ASCII text file is described in Section 12.3. The ifile
command can be used to describe the depths of several material surfaces, but in this case we only have one.

For each material surface in the ifile command, there must be a material command with a unique
id number. The material properties between the free surface and the first material surface in the ifile
are defind by the material command with the lowest id number, and so on. The ifile command only
assigns material properties down to the depth of the last material surface.

In our case, the material properties of the sediment, i.e., between the free surface and the single material
surface in the ifile command are described by

material id=1 vs=300 vp=1450 vpgrad=1.2 rho=2140 rhograd=0.125 \
qs=50 qp=876

Note that the depth of the material surface is relative to the topography, which means that no sediment is
present where the depth is zero. By plotting the compressional wave speed along the top surface and in a
vertical cross-section, we can see both the horizontal extent and the variable depth of the sedimentary basin,
see Figure 10.5.

The slowest shear speed in the model is 300 m/s (in the sediment) and the fastest compressional speed
is 8,000 m/s (in the granite deeper than 35 km). To reduce the ratio between the shortest and longest wave
in the solution, we can impose a minimum threshold on the material velocities through the command

globalmaterial vpmin=800 vsmin=500

The slow material in the sedimentary basin sets the grid size requirement for the simulation. To reduce
the total number of grid points, we use local mesh refinement to coarsen out the computational grid below
the curvilinear grid (that extends to zmax= 3000),

refinement zmax=3500
refinement zmax=4000

Since the base grid has grid size h = 200 m, the two refined Cartesian grids get grid sizes h = 100m and
h = 50m, respectively. The average grid size in the curvilinear grid, which covers the sedimentary basin, is
therefore h = 50 m.

The source mechanism in this small (Mw = 2.9) scenario earthquake corresponds to case W1 in the
ESG2006 benchmark,

52

Longitude

La
tit

ud
e

5.6 5.7 5.8 5.9 6

45.05

45.1

45.15

45.2

45.25

45.3

45.35

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

y

−z

Compressional velocity

0 1 2 3 4
x 104

−10000

−8000

−6000

−4000

−2000

0

2000

0

1000

2000

3000

4000

5000

Figure 10.5: Grenoble basin model. Top: compressional velocity along the free surface, illustrating the
extent of the sedimentary basin. Bottom: compressional velocity in the vertical cross-section x = 20, 000
(latitude ≈ 45.2◦). The black horizontal lines mark the bottom of the curvilinear grid and the mesh refine-
ment interfaces for the Cartesian component grids.

53

source lat=45.2167 lon=5.9167 topodepth=3e3 m0=2.8184e13 \
strike=45 dip=90 rake=180 type=GaussianInt \
freq=188.56 t0=0.06

Note the very high angular frequency in the GaussianInt time function, corresponding to a center frequency
of f0 ≈ 30.0 Hz. The corresponding upper power frequency would be fmax ≈ 75 Hz. With a minimum
shear speed threshold of 500 m/s, this corresponds to a smallest wave length of Lmin = 500/75 ≈ 6.67
m, making a fully resolved simulation extremely challenging. Instead of artificially lowering the freq
parameter, we choose to filter the source time function with a two-pass two-pole Butterworth filter with
corner frequency 1 Hz,

prefilter fc=1.0

The resulting motion is identical to running the simulation with the original time function followed by time
filtering the motion at all points in space using the same filter.

If we use this corner frequency to estimate the shortest wave length, we get Lmin ≈ 500 m, and the
curvilinear grid size h = 50 should provide acceptable resolution with P = 10 grid points per wave length.

In order to avoid incompatibilities due to the exponentially decaying tails in the filtered source time
function, WPP automatically adjusts the starting time of the simulation from t0 = 0 to t0 ≈ −3.97. As a
result the requested 15 seconds of simulation time corresponds to final time t0 + 15 ≈ 11.03. The peak
horizontal velocities along the free surface are shown in Figure 10.6, and the calculated velocity time history
at station R06 is shown in 10.7.

Longitude

La
tit

ud
e

5.6 5.7 5.8 5.9 6

45.05

45.1

45.15

45.2

45.25

45.3

45.35

2

4

6

8

10

12

14

16

x 10−5

Figure 10.6: Grenoble scenarioMw = 2.9 earthquake. Peak horizontal velocity [m/s] for lowpass filtered
motion with corner frequecy fc = 1.0 Hz. Note the elevated velocity levels in the sedimentary basin.

54

−2 0 2 4 6 8 10
−4
−2

0
2
4

x 10−5 Velocity at station R06

Ea
st

 [m
/s

]

−2 0 2 4 6 8 10

−2

0

2

x 10−5

No
rth

 [m
/s

]

−2 0 2 4 6 8 10

−1

0

1
x 10−5

Ve
rti

ca
l [

m
/s

]

Time [s]

Figure 10.7: Grenoble scenarioMw = 2.9 earthquake. Velocity time history at reciever station R06 located
at (lon=5.8210, lat=45.2086, depth=0). The black and red lines correspond to the purely elastic and the
visco-elastic material model, respectively.

The input file Grenoble.in is setup to report the motion at many other stations, and to save several
different image files of the material model and the solution. We encourage the reader to run this case and to
further explore the results.

10.4 Modeling the October 2007, Alum Rock earthquake

This example uses both realistic topography and mesh refinement. The material properties and topography
are obtained from an Etree data base developed by the USGS. Hence, before you can run this case, you must
download the data base from the USGS website, see Section 5.2. It is also necessary to configure WPP to
use the efile command, see Section A.5.

The input scripts are located in the directory wpp-version-2.1/examples/efile:

Alumrock.in Alumrock-2.in Alumrock-2q.in

The main difference between the two first files is the grid size. The case in the Alumrock.in file uses only
about 729,000 grid points and can easily be run on a workstation. The grid size in the top grid is h = 500
m, so this simulation can only be expect to capture very long period motions (frequencies up to 0.1 Hz).
The Alumrock-2.in case uses half the grid size, leading to about 5.4 Million grid points and captures
frequencies up to 0.2 Hz. This case can also be run on a workstation as long as it has enough memory, but
will take about 16 times longer to execute once the material properties have been read from the Etree. Note
that the Etree can take a long time to read, so be patient while the material model is being setup.

The source model for this magnitude Mw ≈ 5.4 earthquake is discretized by many moment tensor
sources distributed over the fault plane with variable strength and initiation times. Similar to previous

55

examples, the input files are setup to save several image and sac files. As an example, in Figures 10.8-10.9,
we show peak horizontal velocities along the top surface as well as the time history of the motion. The reader
is encouraged to run this case to further explore the results. If you have access to a larger parallel machine,
you can easily capture higher frequencies in the motion by reducing the grid size in the grid command and
increasing the corner frequency in the prefilter command.

Longitude

La
tit

ud
e

Max horizontal velocity

−122.6−122.4−122.2 −122 −121.8−121.6−121.4−121.2
36.8

37

37.2

37.4

37.6

37.8

1

2

3

4

5

6

x 10−3

Figure 10.8: Alum RockMw ≈ 5.4 earthquake. Max horizontal velocity for lowpass filtered motion with
corner frequency fc = 0.2Hz. The coast line of southern San Francisco bay and the Pacific ocean is outlined
with a thicker black line.

The third input file, Alumrock-2q.in, uses a visco-elastic material model, but is otherwise the same
as Alumrock-2.in. The ground motion time history at one recording station is shown in Figure 10.9. At
this low frequency, the main influence of the visco-elastic material model is a reduction of the amplitudes at
later times. Also note that the time histories start at time ≈ −20 instead of time zero. This is side effect of
using the prefilter command.

10.5 A scenario earthquake in the Caucasus region

This example demonstrates the use of a pfile material model together with a topography grid file. The input
and output files can be found in

examples/pfile/caucasus.in examples/pfile/caucasus.out

The pfile material model is saved according to the file format in Section 12.2. Here we set up the computa-
tional domain and read the file caucasus_mod3.ppmod using the commands

56

−10 0 10 20 30 40 50 60
−1

−0.5

0

0.5

1
x 10−3

Ea
st

 [m
/s

]

Velocities at station 1427

−10 0 10 20 30 40 50 60
−5

0

5

10
x 10−4

No
rth

 [m
/s

]

−10 0 10 20 30 40 50 60

−2

0

2

x 10−4

Time [s]

Ve
rti

ca
l [

m
/s

]

Figure 10.9: Alum RockMw ≈ 5.4 earthquake. Simulated velocity time history at station 1427 (Lonitude
122.025 W, Latitude 37.402 N, zero depth). The black and red lines show the purely elastic and visco-elastic
responses, respectively.

grid x=160e3 y=160e3 z=50e3 lon=47.08 lat=38.04 az=0 h=500
pfile filename=caucasus_mod3.ppmod

Note that the origin and extent of the grid must be covered by the pfile region, unless other material com-
mands are used. By default, smoothingsize=5 is used in the pfile command, which works well when
a coarser material model is combined with a much finer grid resolution. For example, the shear wave speed
along the free surface is shown on the left side in Figure 10.10. While reading the pfile, WPP outputs some
general information about the content on the file. In this case, we get

*** Reading data from Pfile caucasus_mod3.ppmod in directory ./
Pfile model name (string): ’Caucasus’
Step size in lat and lon: 0.25
Number of latitude points: 7
Min Lat: 38 Max Lat: 39.5
Number of longitude points: 19
Min Lon: 44.5 Max Lon: 49
Number of depth points: 30
Min depth: 0 Max depth: 161
Optional indices: Sediment: -99 MoHo: -99 410: -99 660: -99
Attenuation Q-factors available: yes

We define the topography by

topography input=grid file=caucasus.topo zmax=7560 order=2

After reading the topography grid file,WPP outputs some general information,

57

inside extractTopographyFromGridFile
Nlon=108 Nlat=90
lonMin=4.204170e+01, lonMax=5.095830e+01
latMin=3.704170e+01, latMax=4.445830e+01
elevMin=0.000000e+00, evalMax=3.755000e+03

***Topography grid: min z = -3.681038e+03, max z = 6.142771e+01, \
top Cartesian z = 7.560000e+03

It is important that the geographical location of the topography grid file is consistent with the grid com-
mand such that the elevation can be defined for all grid points on the top of the computational domain.
Note that the raw topographic information has elevation ’e’ (positive above mean sea level) in the range
0 ≤ e ≤ 3755. The topography gets smoothed before the computational grid is constructed and, as a result,
the z-coordinate (negative above mean sea level) satisfies −3681.038 = τmin ≤ z ≤ τmax = 61.42771.
These bounds are slightly different from the bounds on the elevation. As before, we must choose
the thickness of the curvilinear grid such that the zmax option in the grid command satisfies zmax
≥ τmax + 2(τmax − τmin). The topography is shown on the right side of Figure 10.10.

Longitude

La
tit

ud
e

Material shear speed [m/s]

47 47.5 48 48.5 49
38

38.5

39

39.5

1700

1800

1900

2000

2100

2200

Longitude

La
tit

ud
e

Topographic elevation [m]

47 47.5 48 48.5 49
38

38.5

39

39.5

500

1000

1500

2000

2500

3000

3500

Figure 10.10: Shear wave speed (left) and topographic elevation (right) along the surface for the Caucasus
region.

Once the computational grid has been constructed, WPP outputs general information about the number
of grid points in each component,

Global grid sizes (without ghost points)
Grid h Nx Ny Nz Points

0 500 321 321 83 8552403
1 250 641 641 7 2876167
2 250 641 641 38 15613478

Total number of grid points (without ghost points): 2.7042e+07

Even though we ran this calculation on 32 processors, it is probably possible to fit it in memory on a larger
workstation, at least for a purely elastic calculation.

We follow the general velocity structure and coarsen out the grid below depth z ≥ 9000,

58

refinement zmax=9000

After populating all grid points with material properties,WPP outputs the ranges,

----------- Material properties ranges ---------------
2457.72 kg/mˆ3 <= Density <= 3012.49 kg/mˆ3
3105.35 m/s <= Vp <= 7762.5 m/s
1680.37 m/s <= Vs <= 4195.49 m/s
1.84513 <= Vp/Vs <= 1.85425
6.93972e+09 Pa <= mu <= 5.30257e+10 Pa
9.82084e+09 Pa <= lambda <= 7.5468e+10 Pa
--

Furthermore, WPP outputs resolution information that can be translated into the number of grid points per
shortest wave length,

***** PPW = minVs/h/maxFrequency ********
g=0, h=5.000000e+02, minVs/h=5.21109 (Cartesian)
g=1, h=2.500000e+02, minVs/h=9.56454 (Cartesian)
g=2, h=2.500000e+02, minVs/h=6.72147 (curvilinear)

A simple point moment tensor source is used to model a scenario magnitudeMW = 6.6 event,

source x=80e3 y=80e3 z=10e3 m0=1e19 strike=45 dip=90 rake=180 \
type=GaussianInt freq=1.0 t0=6

Since the time dependence is a GaussianInt function, the dependent variables represent displacements.
We estimate the fundamental frequency in the time function through equation (4.2), giving f0 ≈ 0.16 Hz.
As a result, the upper power (highest significant) frequency satisfies fmax ≈ 0.4 Hz. By using the above
grid information on minVS/h, we can calculate the number of grid points per shortest wave length,

P =
minVs

hfmax
≥

5.21

0.4
≈ 13.0.

While running the simulation we ask WPP to accumulate the peak horizontal velocity along the free
surface, and output the result at time t = 50 seconds,

image mode=hvelmax z=0.0 time=50 file=g

In order to plot the horizontal velocity as function of geographical coordinates, we also output latitude and
longitude image files,

image mode=lat z=0 cycle=0 file=g
image mode=lon z=0 cycle=0 file=g

After the simulation is completed, we can then use the Matlab/Octave scripts in the tools directory to read
the image files (for example using the readimagepatch script). A contour plot of the max horizontal
velocity is shown in Figure 10.11.

We save the velocity time history at Latitude 38.25 N, Longitude 48.295 E, using the command

sac lat=38.25 lon=48.295 depth=0 nsew=1 velocity=1 file=ardabil \
usgsformat=1 sacformat=0

59

Longitude

La
tit

ud
e

Max horizontal velocity

47 47.5 48 48.5 49
38

38.5

39

39.5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 10.11: Max horizontal velocity for the Caucasus scenario earthquake

0 10 20 30 40 50 60
−0.02

0
0.02
0.04

Ea
st

 [m
/s

]

Velocity at station Ardabil

0 10 20 30 40 50 60
−0.01

0
0.01
0.02

No
rth

 [m
/s

]

0 10 20 30 40 50 60
−0.01

0

0.01

Time [s]

Ve
rti

ca
l [

m
/s

]

Figure 10.12: Velocity time history at Latitude 38.25 N, Longitude 48.295 E.

60

The information is saved in the USGS text format, resulting in one ASCII text file ardabil.txt, which
can be read by tools/readusgs.m. The nsew=1 option makes WPP save the components in the East,
North, and Vertical directions, and velocity=1 gives the velocity (as opposed to the displacement) time
history. The time history is shown in Figure 10.12.

61

Chapter 11

Keywords in the input file

The syntax of the input file is

command1 parameter1=value1 parameter2=value2 ... parameterN=valueN
comments are disregarded
command2 parameter1=value1 parameter2=value2 ... parameterN=valueN
...

Each command starts at the beginning of the line and ends at the end of the same line. Blank and comment
lines are disregarded. A comment is a line starting with a # character. The order of the parameters within
each command is arbitrary. The material commands (block, ifile, pfile, and efile) are applied in the order
they appear, but the ordering of all other commands is inconsequential. Also note that the entire input file is
read before the simulation starts.

Parameter values are either integers (-2,0,5,...), floating point numbers (20.5, -0.05, 3.4e4), or strings
(wpp, earthquake, my-favorite-simulation). Note that there must be no spaces around the = signs and strings
are given without quotation marks and must not contain spaces. Depending on the specific command, some
parameter values are required to fall within specified ranges.

A breif description of all commands is given in the following sections. The commands marked as
[required] must be present in all WPP input files, while those marked as [optional] are just that. Other com-
mands, such as those specifying the material model can be given by (a combination of) different commands
(block, pfile, efile, or ifile). Unless WPP is run in one of its test modes, the material must be specifed by at
least one of these commands and at least one source must be specified.

11.1 Basic commands

11.1.1 fileio [optional]

The fileio command is used for specifying an output directory, setting the amount of information outputted
byWPP, the output frequency during the time-stepping, as well as enabling fast I/O for parallel file system.
See § 9.1 for more information.

Syntax:
fileio path=... verbose=... printcycle=... pfs=... nwriters=...
Required parameters:
None

62

fileio command parameters
Option Description Type Default

path path to a directory where all output will be written string .
verbose sets the level of diagnostic messages written to stan-

dard out
int 0

printcycle sets the interval for printing the cycle, time, dt info int 100
pfs assume a parallel (1) or serial (0) file system when

writing image files (several processes can simulta-
neously write the same file on a parallel file system)

int 0

nwriters set the number of processes that write an image file int 8

11.1.2 grid [required]

Syntax:
grid nx=... ny=... nz=... x=... y=... z=... h=... lat=...
lon=... az=...
Required parameters:
See below.

The grid command specifies the extent of the computational domain and the grid size in the base grid. When
grid refinement is used, the base grid is the coarsest grid. Optionally the grid command also specifies the
latitude and longitude of the origin and the azimuth angle between North and the x-axis.

There are three basic ways of specifying the extent of the computational domain and the grid size:

• number of grid points in all three dimensions and the grid size: nx=... ny=... nz=... h=...

• spatial extents in all three dimensions and the grid size: x=... y=... z=... h=...

• spatial extents in all three dimensions and the number of grid points in one direction (the x-direction
in this example): x=... y=... z=... nx=...

It is not allowed to over specify the grid size. For example, if x=... is given, you can not specify both h=...
and nx=.... Similarly, it is not allowed to over specify the extent of the computational domain. For example,
when h=... is given, you can not prescribe both y=... and ny=....

grid command parameters (part 1)
Option Description Type Units Default

x physical dimension of grid in the x-direction float m none
y physical dimension of grid in the y-direction float m none
z physical dimension of grid in the z-direction float m none

h grid spacing float m none

nx number of grid points in the x-direction int none none
ny number of grid points in the y-direction int none none
nz number of grid points in the z-direction int none none

63

grid command parameters (geographical coordinates)
Option Description Type Units Default

az clockwise angle from North to the x-axis float degrees 135.0
lat latitude geographical coordinate of the origin float degrees 37.0
lon longitude geographical coordinate of the origin float degrees -118.0

11.1.3 time [required]

Syntax:
time t=... steps=...
Required parameters:
t or steps

The time command specifies the duration of the simulation in seconds or the number of time-steps. The size
of the time step is computed internally by WPP. You may not over specify the duration of the simulation,
i.e., you can not give both t=... and steps=....

Note that the prefilter command changes the start time, see §11.1.5 for a discussion.

time command parameters
Option Description Type Units Default

t duration of simulation float s none
steps number of cycles (time-steps) to advance int none none

11.1.4 source [required]

Syntax:
source x=... y=... z=... lat=... lon=... depth=... topodepth=...
m0=... mxx=... mxy=... mxz=... myy=... myz=... mzz=... f0=...
fx=... fy=... fz=... rake=... strike=... dip=... t0=... freq=...
type=... ncyc=...
Required parameters:
See below.

There can be multiple source commands in an input file. Each source command either sets up a point force
or a point moment tensor source and should follow the following rules:

• The location of the source must be specified by either a Cartesian location (x, y, z) or by geographical
coordinates (lat, lon) together with (depth or topodepth). Both depth and topodepth specify the
depth below the topography.

• Select a point force or a point moment tensor source:

– Point force: give at least one component of the force vector (fx, fy, fz) and optionally the ampli-
tude f0.

64

– A point moment tensor source can be specified in one of two ways:
1. Seismic momentm0, and double couple focal mechanism, strike/dip/rake angles (see [1]).
2. At least one component of the moment tensor (mxx, mxy, etc.) and optionally a scaling
factorm0.

source command parameters (part 1)
Option Description Type Units Default

x x position of the source float m none
y y position of the source float m none
z z position of the source float m none

depth depth of the source (below z=0) double m none
topodepth depth of the source (below free surface) double m none
lat latitude geographical coordinate of the source double degrees none
lon longitude geographical coordinate of the source double degrees none

t0 offset in time float s 0.0
freq frequency float Hz or rad/s 1.0
type Name of time function string none RickerInt
ncyc Number of cycles (must be specified for the Gaus-

sianWindow function)
int none none

Options for the time function (type) are: GaussianInt, Gaussian, RickerInt, Ricker,
Ramp, Triangle, Sawtooth, Smoothwave, VerySmoothBump, Brune, BruneSmoothed,
GaussianWindow, and Liu. The functions are described in § 4.2.

source command parameters (point moment tensor)
Option Description Type Units Default

m0 moment amplitude float Nm 1.0
mxx xx-component of the moment tensor float none 0.0
myy yy-component of the moment tensor float none 0.0
mzz zz-component of the moment tensor float none 0.0
mxy xy-component of the moment tensor float none 0.0
mxz xz-component of the moment tensor float none 0.0
myz yz-component of the moment tensor float none 0.0

strike Aki and Richards strike angle float degrees none
dip Aki and Richards dip angle float degrees none
rake Aki and Richards rake angle float degrees none

65

source command parameters (point force)
Option Description Type Units Default

f0 point force amplitude float N 1.0
fx forcing function in the x direction float none 0.0
fy forcing function in the y direction float none 0.0
fz forcing function in the z direction float none 0.0

11.1.5 prefilter [optional]

Syntax:
prefilter fc=... maxfreq=...
Required parameters:
None

The prefilter command is used to ensure that the solution is well resolved on the computational grid
when the source time functions have high frequency content. The prefilter command is particularly
useful for computing reliable hvelmax and vvelmax image files. The prefilter command modifies
the time functions in all source commands using one or both of the following approaches. If the maxfreq
parameter is given, the freq parameter in all time function is first limited by this value. If the fc parameter is
given, all source time functions are then filter by a 2-pole 2-pass acausal Butterworth filter. In order to avoid
an abrupt start, the minimum threshold value of t0= 4/fc is enforced in all source time functions, before
the filtering is performed. As a side effect, the start time for the simulation may be negative.

prefilter command parameters
Option Description Type Units Default

fc corner frequency in Butterworth filtering of all
source time functions (> 0)

float Hz None

maxfreq Enforce a max threshold value in the freq parameter
in all sources (> 0)

float Hz or rad/s None

11.2 The material model [required]

It is required to define the material model in the entire computational domain, padded by one layer of
ghost cells. However, no material properties need to be given above the topography. The attenuation
command may be located anywhere in the command file. The material commands block, ifile, efile,
and pfile, are applied in the same order as they are given. Hence, it is possible to overwrite the properties
specified by a material command given earlier in the file. This can be particularily useful when using the
block command. Finally, the properties of the optional globalmaterial command are enforced after
reading all other material commands.

66

11.2.1 attenuation [optional]

The attenuation command is used to enable visco-elastic modeling as described in Section 8. The
parser scans for the attenuation command before reading any of the other material commands, so this
command may be located anywhere in the input file. The visco-elastic model uses the quality factors Qp

andQs, which may vary from point to point through the computational domain. If visco-elastic modeling is
enabled, theQP andQS factors must be specified as part of every material command described below. When
visco-elastic modeling is not enabled, the QP and QS factors are not required in the material commands,
and are ignored if present.

Syntax:
attenuation phasefreq=... nmech=... maxfreq=... minppw=...
Required parameters:
None
Note: you may not specify both maxfreq and minppw.

attenuation command parameters
Option Description Type Unit Default

phasefreq The frequency (> 0) at which VS and VP are speci-
fied

float Hz 1.0

nmech Number of SLS mechanisms to approximate con-
stant QP and QS (between 1 and 8)

int None 3

maxfreq The upper frequency limit (> 0) for approximating
constant QP and QS

float Hz 2.0

minppw Calculate the upper frequency limit based on this
number of grid points per shortest wave length (> 0)

float None None

If you specify the minppw option, the upper frequency limit is calculated based on the relation P =
minVs/(hf), i.e.,

fmax =
1

Pmin
min

Vs

h
, fmax = maxfreq, Pmin = minppw.

11.2.2 block

Syntax:
block vp=... vs=... rho=... qp=... qs=... vpgrad=... vsgrad=...
rhograd=... absdepth=... x1=... x2=... y1=... y2=... z1=...
z2=...
Required parameters:
vp, vs, rho (qp and qs with attenuation)

The block command specifies material properties that are constant or vary linearly with depth. By default,
the material properties apply to the entire computational domain. By using the optional parameters x1=...,
x2=..., etc., the material properties are only assigned in parts of the computational domain. When used
together with the topography command, the absdepth flag determines how the z-coordinates are used. If

67

absdepth=0 (default) z1=... and z2=... specify depths below the free surface. If absdepth=1, z1=... and
z2=... bound the z-coordinate of the material block.

The gradient parameters vpgrad, vsgrad, and rhograd specify linear variations in the z-direction
(downward). The units for vpgrad and vsgrad are 1/seconds, which can be interpreted as m/s per m, or
km/s per km. The linear variation is relative to the properties at the free surface (z = 0 or depth=0 with
topography), e.g.,

Vp(z) = vp+ z vpgrad.

Note that when vpgrad is specified together with z1 = z1, Vp(z1) = vp+ z1 vpgrad. Hence, the material
properties at the top of the block (z = z1) can be very different from vp when z1 vpgrad is large.

block command parameters
Option Description Type Units Default

vp P-wave velocity float m/s none
vs S-wave velocity float m/s none
rho density float kg/m3 none
qp or Qp P-wave quality factor float none none
qs or Qs S-wave quality factor float none none
vpgrad vertical gradient for vp float s−1 none
vsgrad vertical gradient for vs float s−1 none
rhograd vertical gradient for rho float kg/m4 none
x1 minimum x-dim for the box shaped sub-region float m -max x
x2 maximum x-dim for the box shaped sub-region float m 2 max x

y1 minimum y-dim for the box shaped sub-region float m -max y
y2 maximum y-dim for the box shaped sub-region float m 2 max y

z1 minimum z-dim for the box shaped sub-region float m -max z
z2 maximum z-dim for the box shaped sub-region float m 2 max z

absdepth z1 and z2 relative to topography (0), or absolute
z-coordinate (1)

int none 0

11.2.3 efile

Syntax:
efile etree=... xetree=... logfile=... query=... vsmin=...
vpmin=... access=... resolution=...
Required parameters:
etree

68

efile command parameters (part 1)
Option Description Type Units Default

etree full path to the etree database file string none none
xetree full path to the extended etree database file string none none
logfile name of log file string none none

efile command parameters (part 2)
Option Description Type Units Default

vsmin minimum shear speed VS float m/s 0
vpmin minimum compresisonal speed VP float m/s 0

query type of query to perform string none MAXRES
resolution average properties over this distance (for

query=FIXEDRES)
float m h

access can be set to parallel or serial string none parallel

The query option can be set to one of the following:

Query Option Description
MAXRES Sample the data at the maximum available resolution in the database. This is

the default query type.
FIXEDRES Average the material properties at the requested resolution, which is specified

with the resolution keyword. The default resolution is the grid spacing. h

For example, to set the data to be sampled at 1 km resolution:

efile query=FIXEDRES resolution=1000 etree=USGS-SF1906.etree

Note: the logfile option can be used to track if any grid points were outside the etree database domain, or if
any grid points were located in the air.

11.2.4 pfile

Syntax:
pfile filename=... directory=... smoothingsize=... vpmin=...
vsmin=... rhomin=... flatten=...
Required parameters:
filename

69

pfile command parameters
Option Description Type Units Default

filename name of input pfile string none none
directory name of directory for the input pfile string none .
smoothingsize smooth data over stencil of this width int none 5
vpmin minimum threshold value for VP float m/s 0
vsmin minimum threshold value for VS float m/s 0
rhomin minimum threshold value for density float m/s 0
flatten Flatten the earth model (T or F) string none F

11.2.5 ifile

Syntax:
ifile filename=...
Required parameters:
filename

The ifile command specifies the depth of material surfaces as function of longitude and latitude, and must
be used in conjunction with the material command. The format for this file is described in Section 12.3,
and an example is given in Section 10.3.

ifile command parameters
Option Description Type Default

filename name of input file holding material surfaces string None

11.2.6 material

Syntax:
material id=... vp=... vs=... qp=... qs=... rho=... vpgrad=...
vsgrad=... rhograd=... vp2=... vs2=... rho2=... vpsqrt=...
vssqrt=... rhosqrt=...
Required parameters:
id, vp, vs, rho (qp and qs with attenuation)

The material command is used to define material properties together with the ifile command, see Sec-
tion 10.3 for an example.

70

material command parameters (constants)
Option Description Type Default

id material ID number > 0 int None
vp P-wave velocity float None
vs S-wave velocity float None
rho Density float None
qp or Qp P-wave quality factor None None
qs or Qs S-wave quality factor None None

material command parameters (gradients)
Option Description Type Default

vpgrad P-velocity gradient float 0.0
vsgrad S-velocity gradient float 0.0
rhograd Density gradient float 0.0

material command parameters (higher order)
Option Description Type Default

vp2 P-velocity quadratic coefficient float 0.0
vs2 S-velocity quadratic coefficient float 0.0
rho2 Density quadratic coefficient float 0.0
vpsqrt P-velocity

√
z coefficient float 0.0

vssqrt S-velocity
√
z coefficient float 0.0

rhosqrt Density
√
z coefficient float 0.0

11.2.7 globalmaterial [optional]

Syntax:
globalmaterial vpmin=... vsmin=...
Required parameters:
None

The globalmaterial command is used to put threshold values on the P - and S-velocities in the material
model. These thresholds are enforced after the material properties have been assigned to all grid points.

globalmaterial command parameters
Option Description Type Default

vpmin Minimum P-wave velocity (> 0) float None
vsmin Minimum S-wave velocity (> 0) float None

71

11.3 Topography and mesh refinement [optional]

11.3.1 topography [optional]

Syntax:
topography input=... file=... resolution=... zmax=... order=...
smooth=... gaussianAmp=... gaussianXc=... gaussianYc=...
gaussianLx=... gaussianLy=...
Required parameters:
input, zmax
Also see discussion below.

The topography command specifies the shape of the free surface boundary, the vertical extent of the curvilin-
ear grid below the free surface, and optionally the polynomical order of the grid mapping. The topography
is given as elevation (in meters) relative to mean sea level, i.e., positive above sea level and negative below
sea level. The curvilinear grid is located between the topography and z = zmax (recall that z is directed
downwards). If the elevation ’e’ of the topography ranges between emin ≤ e ≤ emax, we recommend using
zmax ≥ −emin + 2|emax − emin|.

There are three ways to specify the topography:

• input=file Read the topography as function of latitude and longitude. The file name must be specified
by the file=... parameter. The format for this file is described in Section 12.1.

• input=efile Read the topography from the Etree data base. The Etree data base must be specified by
an efile command (see below). The spatial resolution for querying the Etree data base can be specified
by the resolution=... parameter.

• input=gaussian Build an analytical topography in the shape of a Gaussian hill. The amplitude is
specified by gaussianAmp=..., the hill is centered at gaussianXc=..., gaussianYc=..., and the half
width of the hill in the x and y-directions are specified by gaussianLx=..., and gaussianLy=....

topography command parameters (basic)
Option Description Type Units Default

input Type of input: file, efile or gaussian string none none
file File name if input=file string none none
resolution Resolution for querying the efile if input-efile float meters none
zmax z coordinate of the interface between Cartesian and

curvilinear grid
float m 0

order Interpolation order (2, 3 or 4) int none 3
smooth Number of smoothing iterations of topography grid

surface
int none 10

72

topography command parameters (Gaussian Hill)
Option Description Type Units Default

gaussianAmp Amplitude for a Gaussian hill topography float meters 0.05
gaussianXc x-coordinate of center for a Gaussian Hill float meters 0.5
gaussianYc y-coordinate of center for a Gaussian Hill float meters 0.5
gaussianLx Width of the Gaussian hill in the x-direction float meters 0.15
gaussianLy Width of the Gaussian hill in the y-direction float meters 0.15

11.3.2 refinement [optional]

Each refinement command corresponds to a mesh refinement patch for z ≤ zmax. The grid size in each
refinement patch is half of the next coarser grid size. The grid size in the coarsest grid is prescribed by the
grid command.

Syntax:
refinement zmax=...
Required parameters:
zmax

refinement command parameters
Option Description Type Unit Default

zmax maximum z-coordinate for the refinement region float m None

11.4 Output commands [optional]

The output commands enables data to be saved from the simulation. The sac command saves a time series
of the solution at a recording station, which can be read by the SAC program [6] or the readsac.m Matlab
script in the tools directory. The image command is used to save a two-dimensional cross-section of the
solution, the material properties, or the grid. The image files can be read by the readimagepatch.m Matlab
script in the tools directory. The gmt command outputs a shell script file containing the location of all sac
stations and the epicenter, i.e. the location of the first source command. This shell script file can be used for
further postprocessing by the GMT program [15].

11.4.1 sac [optional]

The sac command is used to save the time history of the solution at a fixed location in space. The sac
command is described in § 9.2.

Syntax:
sac x=... y=... z=... lat=... lon=... depth=... topodepth=...
sta=... file=... type=... writeEvery=... eventDate=...
eventTime=... nsew=... velocity=... usgsformat=... sacformat=...
variables=...

73

Required parameters:
Location of the receiver in Cartesian or geographical coordinates.

The file format is described in Section 12.4.

sac command parameters (part 1)
Option Description Type Units Default

x x position of the receiver float m none
y y position of the receiver float m none
z z position of the receiver float m none

lat latitude geographical coordinate of the receiver float degrees none
lon longitude geographical coordinate of the receiver float degrees none
depth depth of the receiver (below topography) float m none
topodepth depth of the receiver (same as depth) float m none

sta name of the station string none file
file file name string none sac
writeEvery cycle interval to write out the SAC file to disk int none 1000

eventDate date the event occured: YYYY/MM/DD int/int/int none date of run
eventTime time the event occured: hours:minutes:seconds int:int:int none time of run

sac command parameters (part 2)
Option Description Type Units Default

usgsformat output all components in an ASCII text file int none 0
sacformat output each component in a SAC file int none 1
type binary or ascii (for SAC format) string none binary

nsew output (x,y,z)-components (0) or East, North, and
vertical (−z) components (1)

int none 0

velocity output time derivative of solution int none 0
variables solution, curl, or divergence string none solution

11.4.2 image [optional]

Syntax:
image x=... y=... z=... time=... timeInterval=... cycle=...
cycleInterval=... file=... mode=... precision=...
Required parameters:
Location of the image plane (x, y, or z)
Time for output (time, timeInterval, cycle, or cycleInterval)

74

Notes:
mode=topo can only be used when the topography command is used.
z=0 corresponds to the free surface when topography is used.
The error in the solution can only be calculated in testing mode, i.e., while using twilight, testlamb,
or testpointsource.

The image file format is described in Section 12.5.

image command parameters
Option Description Type Units Default

x x location of image plane (≥ 0) float m none
y y location of image plane (≥ 0) float m none
z z location of image plane (≥ 0) float m none

time Time-level for outputting image (closest time step)
(≥ 0)

float s none

timeInterval Time-level interval for outputting a series of images
(> 0)

float s none

cycle Time-step cycle to output image (≥ 0) int none none
cycleInterval Time-step cycle interval to output a series of images

(≥ 1)
int none none

file File name header of image string none image
precision Floating point precision for saving data (float or dou-

ble)
string none float

mode The field to be saved string none rho

mode can take one of the following values:

mode options (grid & geography)
Value Description

lat latitude (in degrees)
lon longitude (in degrees)
topo elevation of topography [only available with topography]
grid grid coordinates in the plane of visualization (e.g. y-z plane if x=const)

75

mode options (material)
Value Description

rho density
lambda lambda
mu mu
p p velocity
s s velocity
qp QP quality factor
qs QS quality factor

mode options (solution)
Value Description

ux displacement in the x-direction
uy displacement in the y-direction
uz displacement in the z-direction
div divergence (div) of the displacement
curl magnitude of the rotation (curl) of the displacement
veldiv divergence (div) of the velocity
velcurl magnitude of the rotation (curl) of the velocity
velmag magnitude of the velocity
hvelmax maximum in time of the horizontal velocity (North-East components)
vvelmax maximum in time of the vertical velocity
uxerr x-component of error (difference between computed and exact solutions)
uyerr y-component of error (difference between computed and exact solutions)
uzerr z-component of error (difference between computed and exact solutions)
fx Forcing in the x-direction
fy Forcing in the y-direction
fz Forcing in the z-direction

11.4.3 gmt [optional]

Syntax:
gmt file=...
Required parameters:
None.

76

gmt command parameters
Option Description Type Default

file name of output file for gmt c-shell commands string wpp.gmt.csh

11.5 WPP testing commands [optional]

11.5.1 twilight

The twilight command runs WPP in a testing mode where forcing functions are constructed to create a
known smooth analytical solution, see Appendix B.1 for details.

Syntax:
twilight errorlog=... omega=... c=... phase=... momega=...
mphase=... amprho=... ampmu=... amplambda=...
Required parameters:
None

twilight command parameters
Option Description Type Default

errorlog Outputs error log in file twilight errors.dat int 0
omega Wave number in exact solution float 1.0
c Phase speed in exact solution float 1.3
phase Solution phase coefficient float 0.0
momega Wave number in material float 1.0
mphase Material phase coefficient float 0.4
amprho Density amplitude float 1.0
ampmu Material µ amplitude float 1.0
amplambda Material λ amplitude float 1.0

11.5.2 testlamb

The testlamb command solves Lamb’s problem, i.e., the displacement due to a vertical point forcing on a
flat free surface, see Appendix B.2 for details.

Syntax:
testlamb x=... y=... cp=... rho=... fz=...
Required parameters:
Location of the forcing (x, y).

77

testlamb command parameters
Option Description Type Default

x x-coordinate of point source float 0.0
y y-coordinate of point source float 0.0
cp P-wave velocity float 1.0
rho Density float 1.0
fz Magnitude of the forcing float 1.0

11.5.3 testpointsource

The testpointsource command calculates the displacement due to a point source in a homogeneous whole
space, and computes the error. Note that the reported errors are only reliable before the solution has reached
the outflow boundaries. Look in the source code for further information.

Syntax:
testpointsource x=... y=... z=... cp=... cs=... rho=... m0=...
mxx=... mxy=... mxz=... myy=... myz=... mzz=... f0=... fx=...
fy=... fz=... freq=... t0=... type=...
Required parameters:
None

testpointsource command parameters (part 1)
Option Description Type Default

x x-coordinate of point source float 0
y y-coordinate of point source float 0
z z-coordinate of point source float 0

freq Frequency of the forcing float 1
t0 Offset in time float 1
type Type of the source: SmoothWave, VerySmooth-

Bump,Ricker
string Ricker

cp P-wave velocity float
√
3

cs S-wave velocity float 1
rho Density float 1

78

testpointsource command parameters (point source type)
Option Description Type Default

m0 Moment amplitude float 1
mxx xx-component of moment tensor float 0
mxy xy-component of moment tensor float 0
mxz xz-component of moment tensor float 0
myy yy-component of moment tensor float 0
myz yz-component of moment tensor float 0
mzz zz-component of moment tensor float 0

f0 Point force amplitude float 1
fx Magnitude of the forcing in the x-direction float 1
fy Magnitude of the forcing in the y-direction float 1
fz Magnitude of the forcing in the z-direction float 1

11.6 Advanced simulation controls [optional]

WARNING! The commands in this section are only intended for advanced users who are intimately familiar
with the inner workings of WPP. These commands might lead to unexpected side effects. Only the source
code gives a complete description of what these commands really do.

11.6.1 supergrid [optional]

Syntax:
supergrid thickness=... damping coefficient=...
Required parameters:
None

supergrid command parameters
Option Description Type Default

thickness Thickness of the supergrid region float 15 h
damping coefficient Damping coefficient in supergrid region float 0.15

11.6.2 boundary conditions [optional]

Syntax:
boundary conditions lx=... hx=... ly=... hy=... lz=... hz=...
Required parameters:
None

79

Boundary conditions parameters
Option Description Type Default

lx Boundary condition at x = 0 int 0-5 5
hx Boundary condition at x = xmax int 0-5 5
ly Boundary condition at y = 0 int 0-5 5
hy Boundary condition at y = ymax int 0-5 5
lz Boundary condition at depth = 0 int 0-5 2
hz Boundary condition at z = zmax int 0-5 5

boundary condition Type values
Value Type

0 Clayton-Enquist boundary
1 Energy absorbing boundary
2 Stress-free boundary
3 Dirichlet boundary
4 Neumann boundary
5 Supergrid boundary

11.6.3 developer [optional]

Warning: you need to be intimately familiar with the inner workings ofWPP to use this command. Look in
the source code to get a full understanding of what this command really does.

Syntax:
developer cfl number=... interpolation=... ctol=... cmaxit=...
output load=... output timing=... log energy=... print energy=...
mpiio=... iotiming=...
Required parameters:
None

developer parameters (part 1)
Option Description Type Default

cfl number CFL number (> 0) float 0.8
interpolation Interpolation type at grid refinement boundaries (conservative or

non-conserative)
string conservative

ctol Relative tolerance for iterative solution of conservative grid re-
finement (> 0)

float 1e-3

cmaxit Max number of interations for solving conservative grid refine-
ment equations (> 0)

int 20

80

developer parameters (part 2)
Option Description Type Default

output load Output load info (0 or 1) int 0
output timing Output timing info (0 or 1) int 0
log energy File name for saving energy info string none
print energy Save energy information (0 or 1) int 0
mpiio Use the standard MPI-I/O (1) or Bjorn’s fast I/O (0) routines for

saving image files
int 0

iotiming output timing info after each image is written to disk. (0 or 1) int 0

81

Chapter 12

File formats

12.1 topography

Topography is specified as elevation above mean sea level on a regular lattice in gegraphic coordinates. The
unit for elevation is meters, while latitude and longitude are in degrees. A topography file must cover the
entire horizontal extent of the computational domain.

Let the elevation be known at longitudes

φi, i = 1, 2, . . . , Nlon,

and latitudes
θj , j = 1, 2, . . . , Nlat,

Note that the latitudes and the longitudes must either be strictly increasing or strictly decreasing, but the step
size may vary.

The elevation should be given on the regular lattice

ei,j = elevation at longitude φi, latitude θj .

The topography file should be an ASCII text file with the following format. The first line of the file holds
the number of longitude and latitude data points:

Nlon Nlat

On subsequent lines, longitude, latitude and elevation values are given in column first ordering:

φ1 θ1 e1,1

φ2 θ1 e2,1
...

...
...

φNlon θ1 eNlon,1

...
...

...
φ1 θNlat e1,Nlat

φ2 θNlat e2,Nlat

...
...

...
φNlon θNlat eNlon,Nlat

82

12.2 pfile

The header has 7 lines and follows the following format:

Line Column 1 Column 2 Column 3 Column 4
1 Name (string)
2 ∆ [deg] (real)
3 Nlat (integer) Latmin [deg] (real) Latmax [deg] (real)
4 Nlon (integer) Lonmin [deg] (real) Lonmax [deg] (real)
5 Ndep (integer) dmin [km] (real) dmax [km] (real)
6 Ised (integer) IMoHo (integer) I410 (integer) I660 (integer)
7 Q-available? (logical)

Lines 3 and 4 contain the number of lattice points as well as the starting and ending angles in the latitude
and longitude direction, respectively, . Line 5 contains the number of depth values in each profile, followed
by the minimum and maximum depth measured in km. Line 6 supplies optional information about the
index of some material discontinuities in each depth profile. Give -99 if not known. Note that the index
for each discontinuity (sediment, MoHo, 410, 660) indicates the row number within each profile, for the
material property just above the discontinuity. Hence, the subsequent entry in each profile should have the
same depth value and contain the material property just below the same discontinuity. Line 7 should contain
the single letter ’T’ or ’t’ if the subsequent data contains quality factors (QP and QS); otherwise it should
contain the single letter ’F’ or ’f’. The presence of quality factors may alternatively be indicated by using
the strings ’.TRUE.’, ’.true.’, ’.FALSE.’, or ’.false.’.

The first seven lines of a pfile can look like this:

Caucasus
0.25
7 38.00 39.50
19 44.50 49.00
30 0.00 161.00
-99 -99 -99 -99
.TRUE.

The header is directly followed byNlat ×Nlon depth profiles, ordered such that the longitude varies the
fastest, that is, according to the pseudo-code:

for (Lati = Latmin; Lati <= Latmax; Lati+ = ∆)
for (Lonj = Lonmin; Lonj <= Lonmax; Lonj+ = ∆)

(save depth profile for Lati, Lonj)
end

end

The first line of each depth profile holds the latitude and longitude (in degrees as real numbers), and the
number of depth values, which must equal Ndep. For example a depth profile for latitude 33.108, longitude
-115.66, with Ndep = 19 points in the depth direction starts with the line

33.108 -115.66 19

83

The subsequent Ndep lines have the following format:

Index (int) depth [km] Vp [km/s] Vs [km/s] ρ [g/cm3] QP QS

Note that QP and QS should only be present when indicated so by the Q-availability flag on line 7 of the
header. Also note that the units are different than in other parts of WPP. In particular, VP and VS should be
given in km/s= 1000 m/s, and density (ρ) should be given in g/cm3 = 1000 kg/m3.

12.3 ifile

The material surface file (ifile) should be an ASCII text file with the following format. The first line of the
file holds the number of longitude and latitude data points, as well as the number of material surfaces:

Nlon Nlat Nmat

On subsequent lines, longitude, latitude and Nmat surface depth values are given in column first ordering:

Lon1 Lat1 d1,1,1 . . . dNmat,1,1

Lon2 Lat1 d1,2,1 . . . dNmat,2,1

...
...

...
...

LonNlon
Lat1 d1,Nlon,1 . . . dNmat,Nlon,1

...
...

...
Lon1 LatNlat

d1,1,Nlat
. . . dNmat,1,Nlat

Lon2 LatNlat
d1,2,Nlat

. . . dNmat,2,Nlat

...
...

...
...

LonNlon
LatNlat

d1,Nlon,Nlat
. . . dNmat,Nlon,Nlat

It is required that dq,i,j ≤ dq+1,i,j .

12.4 sac

SAC files hold the time history of one component of the solution at a fixed point in space. A detailed descrip-
tion of the SAC format can be found at http://www.iris.edu/manuals/sac/manual.html. In
the tools directory, we provide a simplified Matlab reader of SAC files called readsac.m. Note that
only some of the header information is parsed by this reader:

% READSAC
%
% Read SAC receiever data.
%
% [u,dt,lat,lon,t0] = readsac(fname, format)
%
% Input: fname - Name of SAC file
% format - Little endian (’l’) or big endian (’b’)

84

% byte order for binary data. Default is ’l’.
%
% Output: u - The data component on SAC file
% dt - Uniform time step for u
% lat, lon - Lat and Lon of the SAC station.
% t0 - Start time for time-series
%
function [u,dt,lat,lon,t0] = readsac(fname, format)
if nargin < 2

format = ’l’;
end;

fid = fopen(fname,’r’,format);
if fid < 0

disp([’Error: could not open file ’ fname]);
else

dt = fread(fid,1,’float32’);
fseek(fid,4*4,0);
t0 = fread(fid,1,’float32’);
fseek(fid,25*4,0);
lat = fread(fid,1,’float32’);
lon = fread(fid,1,’float32’);
fseek(fid,2*4,0);
evlat = fread(fid,1,’float32’);
evlon = fread(fid,1,’float32’);
fseek(fid,4,0);
evdepth = fread(fid,1,’float32’);
disp([’Begin time (t0) = ’ num2str(t0)]);
disp([’Event lat lon = ’ num2str(evlat) ’ ’ num2str(evlon)]);
disp([’Event depth ’ num2str(evdepth) ’ km’]);
fseek(fid,4*40,0);
npts=fread(fid,1,’int’);
fseek(fid,78*4,0);
u=fread(fid,npts,’float32’);
fclose(fid);

end

12.5 image

Images files hold two-dimensional data on a composite grid and are written in a binary format. The header of
the file starts with two integers: the precision (4 for single precision, 8 for double precision), and the number
of patches. After that follows header info for each patch, consisting of the grid size h (a double precision
floating point number) and four integers holding the starting and ending indices for each patch. The header
is followed by the two-dimensional data on each patch, consisting of one single or double precision floating
point number for each grid point, stored in column-first order.

The exact format follows from the Matlab function tools/readimagepatch.m which is provided in the

85

source distribution ofWPP:

% Returns image patch nr. ’inr’ on file ’fil’ in ’im’,
% corresponding grid returned in ’x’ and ’y’
function [im,x,y]=readimagepatch(fil, inr)

fd=fopen(fil,’r’);

% Precision of image data (4-float, 8-double)
pr=fread(fd,1,’int’);

% Number of image patches on file
ni=fread(fd,1,’int’);
if inr > ni

disp(’Error image nr too large’);
else
% For each patch read grid spacing and index bounds.
% For patch nr. p: ib(p) <= i <= ie(p) and jb(p) <= j <= je(p)

for i=1:ni
h(i) = fread(fd,1,’double’);
ib(i) = fread(fd,1,’int’);
ie(i) = fread(fd,1,’int’);
jb(i) = fread(fd,1,’int’);
je(i) = fread(fd,1,’int’);

end;
% Want patch nr. inr, skip the first inr-1 image patches.

for i=1:inr-1
fseek(fd,(ie(i)-ib(i)+1)*(je(i)-jb(i)+1)*pr,0);

end;
% Read wanted image patch, single or double precision.

if pr == 4
im = fread(fd,[ie(inr)-ib(inr)+1 je(inr)-jb(inr)+1],’float’);

else
im = fread(fd,[ie(inr)-ib(inr)+1 je(inr)-jb(inr)+1],’double’);

end;
% Corresponding Cartesian grid

x = ((ib(inr):ie(inr))-1)*h(inr);
y = ((jb(inr):je(inr))-1)*h(inr);
fclose(fd);

% transpose im and return result
im = im’;

end;

In this implementation, fd is a file descriptor variable. The Matlab functions fopen and fread perform
binary I/O similarly to the C functions with the same names.

Note that the above matlab function reads one image patch from an image file into the Matlab matrix
im. The corresponding Cartesian coordinates are returned in the Matlab vectors x and y.

86

Appendix A

InstallingWPP

The WPP source code is released under the GNU general public license and can be downloaded from:

https://computation.llnl.gov/casc/serpentine/software.html

Version 2.1 ofWPP is built using make. We recommend using GNU make, sometimes called gmake. You
can check the version of make on you system with the command

shell> make -v

If you don’t have GNU make installed, you can obtain it from www.gnu.org.

A.1 Supported platforms and compilers

We have built WPP and its supporting libraries on Intel based desktops and laptops running LINUX and
OSX. It has also been built on various supercomputers such as the large Linux clusters at LLNL (currently
zeus, atlas and sierra), as well as on IBM BG/L and BG/P systems. We have built WPP using Gnu, Intel, or
IBM compilers. Our experience is that WPP is likely to build if the underlying third party libraries can be
built. Currently, we are using the following compiler versions:

Gnu: g++/gcc/gfortran versions 4.3 to 4.5
Intel: icpc/icc/ifort versions 9.1 to 11.1
IBM: version info currently unavailable

A.2 MPI and other third party libraries

Before you can build WPP, you must install the third party libraries. All libraries need to be installed in
the same directory, such that each library installs its files in the lib and include subdirectories. To avoid
incompatibility issues and linking problems, it is advisable to use the same compiler for building the third
party libraries as for buildingWPP.

For a basic installation of WPP, you need:

1. the lapack and blas libraries, which provide basic linear algebra functionality. On many machines
these libraries are preinstalled,

87

2. an MPI-2 library, which provides support for message passing on parallel machines. An example is
the mpich2 library. Note that you need the MPI-2 library even when installing WPP on a single core
system.

Note that the MPI-2 library often include wrappers for compiling, linking, and executing MPI programs.
For example, the mpich2 package includes the mpicxx and mpif77 compilers, as well as the mpirun script.
These wrappers simplify the compilation and linking process and we highly recommend using them.

For a complete installation that supports the efile command for reading e-tree material data bases, you
need to install the following additional libraries (see Section A.5 for details):

• The Etree library

• The Proj library

• The cencalvm library

A.2.1 Mac computers

We recommend using the MacPorts package manager for installing the required compilers and libraries.
Simply go to www.macports.org, and install macports on your system. With that in place, you can use the
port command as follows

shell> port install gcc44
shell> port install mpich2 +gcc44

Here, gcc44 refers to version 4.4 of the Gnu compiler suite. Compiler versions are bound to change with
time. Before starting, make sure you install a version of gcc that is compatible with the mpich2 package.
By adding the gcc44 variant, you also get a compatible Fortran compiler.

The lapack and blas libraries are preinstalled on recent Macs and can be accessed using the “-framework
vecLib” link option. If that does not work on your machine, you can download those libraries from
www.netlib.org.

A.2.2 Linux machines

We here give detailed instructions for installing the third part libraries under 64 bit, Fedora Core 14 Linux.
Other Linux variants use similar commands for installing software packages.

You need to have root privileges to install precompiled packages. Start by opening an xterm as root
using the command

su -

Install the compilers by issuing the commands

yum install gcc
yum install gcc-c++
yum install gcc-gfortran

You install the mpich2 library and include files with the command

yum install mpich2-devel

88

The blas and lapack libraries are installed with

yum install blas
yum install lapack

On our system, the libraries were installed in /usr/lib64 as libblas.so.3 and liblapack.so.3.
For some unknown reason, the install program does not add links to these files with extension .so, which is
necessary for the linker to find them. Wemust therefore add the links explicitly. If the libraries were installed
elsewhere on your system, but you don’t know where, this is how to find them: Give the commands:

cd /
find . -name "*blas*" -print

After locating the libraries, we add links to the libraries by issuing the commands (you need to be root for
this to work)

cd /usr/lib64
ln -s libblas.so.3 libblas.so
ln -s liblapack.so.3 liblapack.so

A.3 Directory structure

To unpack the WPP source code, you place the file wpp-version-2.1.tar.gz in the desired location
and issue the following commands:

shell> gunzip wpp-version-2.1.tar.gz
shell> tar xvf wpp-version-2.1.tar

Afterwards, you will find a new directory named wpp-version-2.1, which contains several files and
subdirectories:

• LICENSE.txt License information.

• INSTALL.txt Information about how to buildWPP (short version).

• KNOWN-BUGS.txt List of known problems, porting issues, or bugs.

• README.txt General information aboutWPP.

• configs Directory containing make configuration files.

• src C++ and Fortran source code ofWPP.

• toolsMatlab scripts for post processing and analysis.

• examples Sample input files.

• MakefileMain makefile (don’t change this file!).

• wave.txt Text for printing the ”WPP Lives” banner at the end of a successful build.

89

A.4 Compiling and LinkingWPP (without the cencalvm library)

The best way of getting started is to first build WPP without the cencalvm library. This process should be
very straight forward and the resultingWPP executable supports all commands except the efile command.
If you need to use the efile command, you can later install the cencalvm and supporting libraries, see
§ A.5, and then recompileWPP.

Start by familiarizing yourself with the wpp source code by listing the main wpp directory,

shell> cd /enter/your/path/wpp-version-2.1
shell> ls

Go into the configs directory:

shell> cd configs

You should set the environment variable WPPMAKE to point to a configuration file for the main ”Makefile”.
Examples for some common operating systems are given in the configs directory (make.amac for Mac’s;
make.tux, make.fc14, and make.sierra for Linux machines). For example, to use the configs/make.amac
setup, you can use the csh-command

setenv WPPMAKE /enter/your/path/wpp-version-2.1/configs/make.amac

If you are using a Bourne, bash, or related shell, you should instead use the command

export WPPMAKE=/enter/your/path/wpp-version-2.1/configs/make.amac

It is a good idea to include this command in your setup file (.cshrc for c-shell).
You build WPP with the ”make” command from the main directory.

shell> cd /enter/your/path/wpp-version-2.1
shell> make

If you for some reason wish to remove all object files and the wpp executable, you can do

shell> cd /enter/your/path/wpp-version-2.1
shell> make clean

By default, theWPP executable is located in

/my/installation/dir/wpp-version-2.1/optimize_v2.1/wpp

It can be convenient to add this directory to your PATH environment variable (i.e., modify your .cshrc
file).

You can also build a debug version ofWPP by adding the debug=1 option to make,

shell> cd /my/installation/dir/wpp-version-2.1
shell> make debug=1

That executable will be located in

/my/installation/dir/wpp-version-2.1/debug_v2.1/wpp

90

A.4.1 How do I setup the make.inc file?

The main input file for make is

wpp-version-2.1/Makefile

Do not change the Makefile. It should only be necessary to edit your configuration file (the file name
should be given in the WPPMAKE environment variable), for example

/my/path/wpp-version-2.1/configs/make.inc

This file holds all information that is particular for your system, such as the name of the compilers, the
location of the third party libraries, and any extra arguments that should be passed to the compiler or linker.
This file also instructs make whether or not the cencalvm library should be linked toWPP.

The following file incudes all configurable options:

etree = no

CXX = mpicxx
CC = mpicc
FC = mpif77

WPPROOT = /Users/petersson1

EXTRA_CXX_FLAGS = -DUSING_MPI
EXTRA_FORT_FLAGS = -fno-underscoring
EXTRA_LINK_FLAGS = -framework vecLib

The etree variable should be set to yes or no, and indicates whether the cencalvm and related libraries are
available. The CXX, CC, and FC variables should be set to the names of the C++, C, and Fortran compilers,
respectively. The WPPROOT variable should be set to the path of the third party libraries, such that the
directories WPPROOT/lib and WPPROOT/include contain the libraries and include files, respectively. Finally,
the EXTRA_CXX_FLAGS, EXTRA_FORT_FLAGS, and EXTRA_LINK_FLAGS variables can optionally
be set to any additional argument that needs to be passed to the C++ compiler, Fortran compiler, or linker,
on your system.

A.5 Installing cencalvm and its supporting libraries

The cencalvm library was developed by Brad Aagaard at USGS. Both the cencalvm library and the Etree
data base files, holding the material model of Northern California, can currently be downloaded from

earthquake.usgs.gov/regional/nca/3Dgeologic/cencalvm_doc

The installation process, which is outlined below, is described in detail on the above web page. Note that
three libraries need to be installed: euclid (etree), proj4, and cencalvm. In order for WPP to use them, they
should all be installed in the same directory and you should assign that directory to the WPPROOT variable
in the make.inc file discussed above.

Note that the euclid library must be installed manually by explicitly copying all include files to the
include directory and all libraries to the lib directory,

91

shell> cd euclid3-1.2/libsrc
shell> make
shell> cp *.h ${WPPROOT}/include
shell> cp libetree.* ${WPPROOT}/lib

The proj4 library should be configured to be installed in WPPROOT. This is accomplished by

shell> cd proj-4.7.0
shell> configure --prefix=${WPPROOT}
shell> make
shell> make install

The cencalvm library should also be configured to be installed in WPPROOT. You also have to help the
configure script finding the include and library files for the proj4 and etree libraries,

shell> cd cencalvm-0.6.5
shell> configure --prefix=${WPPROOT} CPPFLAGS="-I${WPPROOT}/include" \

LDFLAGS="-L${WPPROOT}/lib"
shell> make
shell> make install

To verify that the libraries have been installed properly, you should go to the WPPROOT directory and
list the lib subdirectory. You should see the following files (on Mac OSX machines, the .so extension is
replaced by .dylib):

shell> cd ${WPPROOT}
shell> ls lib
libetree.so libetree.a
libproj.so libproj.a libproj.la
libcencalvm.a libcencalvm.la libcencalvm.so

Furthermore, if you list the include subdirectory, you should see include files such as

shell> cd ${WPPROOT}
shell> ls include
btree.h etree.h etree_inttypes.h
nad_list.h projects.h proj_api.h
cencalvm

Note that the include files for cencalvm are in a subdirectory with the same name.
Once you have successfully installed all three libraries, it is easy to re-configure WPP to use them.

Simply edit the make configuration file (make.inc) according to

etree = yes
...

You then need to re-compileWPP. Go to the wpp main directory, remove the previous executable and object
files, and re-run make:

shell> cd /my/installation/dir/wpp-version-2.1
shell> make clean
shell> make

92

As before, if all goes well, the “WPP lives” banner is shown after the make command is completed:

‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘

____ __ ____ .______ .______
\ \ / \ / / | _ \ | _ \
\ \/ \/ / | |_) | | |_) |
\ / | ___/ | ___/
\ /\ / | | | |
__/ __/ | _| | _|

__ __ ____ ____ _______ _______. __
			\ \ / /	____	/		
			\ \/ /		__	(----‘	
			\ /	__	\ \		
‘----.		\ /		____.----)		__	
_______		__	__/	_______	_______/ (__)		

‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘
*** Configuration file: /Users/andersp/src/wpp/configs/make.amac ***
*** Build directory: optimize_v2.1 ***

93

Appendix B

Testing theWPP installation

Once WPP has been installed, it is a good idea to verify that the code works properly. For this purpose,
we provide test scripts in the examples directory. With each input file xyz.in, there is a corresponding
output file named xyz.out. Note that when WPP runs in parallel, some of the output can appear in a
different order. The most important aspect of these tests is to verify the reported errors in the numerical
solutions, which is reported near the end of the output files. These numbers should be independent of the
number of MPI processes on a given machine, but can vary slightly from one type of hardware to another,
due to roundoff errors in floating point arithmetic. Note that some of the tests use a significant number of
grid points and will only fit in memory on larger machines.

On some systems, it is necessary to start an MPI daemon before any parallel programs can be started.
This is often done by issuing the command

mpd &

Refer to your local sysadmin if you have problems running wpp in parallel.

B.1 Method of manufactured solutions

The method of manufactured solutions (also know as twilight zone testing) provides a general way of testing
the accuracy of numerical solutions of partial differential equations, including effects of heterogeneous
material properties and various boundary conditions on complex geometries. The test scripts can be found
in the directory

.../wpp-version-2.1/examples/twilight

In the twilight zone testing module ofWPP, we take the material properties to be

ρ(x, y, z) = Aρ (2 + sin(ωmx+ θm) cos(ωmy + θm) sin(ωmz + θm)) ,

µ(x, y, z) = Aµ (3 + cos(ωmx+ θm) sin(ωmy + θm) sin(ωmz + θm)) ,

λ(x, y, z) = Aλ (2 + sin(ωmx+ θm) sin(ωmy + θm) cos(ωmz + θm)) .

The internal forcing, boundary forcing and initial conditions are chosen such that the exact (manufactured)
solution becomes

ue(x, y, z, t) = sin(ω(x− cet)) sin(ωy + θ) sin(ωz + θ),

ve(x, y, z, t) = sin(ωx+ θ) sin(ω(y − cet)) sin(ωz + θ),

we(x, y, z, t) = sin(ωx+ θ) sin(ωy + θ) sin(ω(z − cet)).

94

Nx h ‖w − we‖∞ ratio
31 1.667 · 10−1 1.25 · 10−1 –
61 8.333 · 10−2 3.28 · 10−2 3.81
121 4.167 · 10−2 8.67 · 10−3 3.78

Table B.1: Twilight test: Max norm errors in the vertical displacement component.

The values of the material parameters (ωm, θm, Aρ, Aλ, Aµ) and the solution parameters (ω, θ, ce), can
be modified in the input script. Since the exact solution is know, it is possible to evaluate the error in
the numerical solution. By repeating the same test on several grid sizes, it is possible to establish the
convergence order of the numerical method.

The basic twilight tests use a single grid, a flat topography, and cover the computational domain
(x, y, z) ∈ [0, 5]3. These cases are provided in the three scripts:

gen-twi-1.in gen-twi-2.in gen-twi-3.in

The numerical solution is simulated up to time t = 4.8 on a grid with 313, 613, and 1213 grid points,
respectively. The corresponding results are given in the three output files

gen-twi-1.out gen-twi-2.out gen-twi-3.out

Assuming mpiexec is used to execute parallel programs, you run the first of these cases on 4 processes
with the command

cd examples/twilight
mpiexec -n 4 ../../optimize_v2.1/wpp gen-twi-1.in

The errors in max and L2 norm in the numerical solution is reported at the bottom of these files and some
of these numers are summarized in Table B.1.

To test mesh refinement on a geometry with flat topography, we provide the scripts

mref-twi-1.in mref-twi-2.in mref-twi-3.in

Again the numerical solution is simulated up to time t = 4.8 on a grid with 313, 613, and 1213 grid points,
respectively. A refined mesh with half the grid size is used near the free surface, in 0 ≤ z ≤ 2. The
corresponding results are given in the three output files

mref-twi-1.out mref-twi-2.out mref-twi-3.out

Non-planar free surfaces are tested by the scripts

gauss-twi-1.in gauss-twi-2.in gauss-twi-3.in

In this case, the free surface is a Gaussian hill and the numerical solution is simulated up to time t = 0.8 on
a grid with 313, 613, and 1213 grid points, respectively. The curvilinear grid covers the domain between the
free surface and z = 0.25, and a single Cartesian grid covers the remainder of the computational domain
(0.25 ≤ z ≤ 1). The corresponding results are given in the three output files

gauss-twi-1.out gauss-twi-2.out gauss-twi-3.out

Note that some image files are generated by these scripts and placed in the sub-directories gauss_31,
gauss_61, and gauss_121, respectively. We encourage the user to look at these image files, for example
by reading them into matlab/octave using the script tools/readimagepatch.m.

95

B.2 Lamb’s problem

The WPP installation can be tested further by solving Lamb’s problem, i.e., the motion due to a vertical
point force applied on the free surface. The material is assumed homogeneous and the ratio between the
compressional and shear velocities is

√
3, i.e., λ = µ. Hence the shear velocity is Cs = Cp/

√
3. The time

function is a verySmoothBump with freq=1 and t0=0. Note that only the vertical component of the exact
solution is available, and it is only calculated along the free surface (z = 0). Images of the error can be saved
with the image command using the options type=uzerr z=0. The errors in the solution, measured in
max and L2 norms, are reported at the end of the run. This problem tests the implementation of a point force
and (to some extent) the supergrid far field boundary condition. The input files can be found in the directory

shell> cd wpp-version-2.1/examples/lambtest
shell> ls
Lambtest1.in Lambtest2.in Lambtest3.in Lambtest4.in

Here we provide input files with four different grid sizes, with 1162 × 59, 2312 × 116, 4612 × 231, and
9212 × 461 grid points, respectively. Be aware that the finest grid uses about 391 Million grid points and
can only be run on a sufficiently large machine. The corresponding output files are given in

Lambtest1.out Lambtest2.out Lambtest3.out Lambtest4.out

Note that the most important information is near the end of these files, where the error in the numerical
solution is reported.

96

Bibliography

[1] K. Aki and P.G. Richards. Quantitative Seismology. University Science Books, second edition, 2002.

[2] D. Appelö and N. A. Petersson. A stable finite difference method for the elastic wave equation on
complex geometries with free surfaces. Comm. Comput. Phys., 5:84–107, 2009.

[3] S. M. Day, J. Bielak, D. Dreger, S. Larsen, R. Graves, A. Pitarka, and K. B. Olsen. Test of 3D
elastodynamic codes: Lifelines project task 1A01. Technical report, Pacific Earthquake Engineering
Center, 2001.

[4] S. M. Day, J. Bielak, D. Dreger, S. Larsen, R. Graves, A. Pitarka, and K. B. Olsen. Test of 3D
elastodynamic codes: Lifelines program task 1A02. Technical report, Pacific Earthquake Engineering
Center, 2003.

[5] H. Emmerich and M. Korn. Incorporation of attenuation into time-dependent computations of seismic
wave fields. Geophysics, 52(9):1252–1264, 1987.

[6] P. Goldstein, D. Dodge, M. Firpo, and L. Miner. International Handbook of Earthquake and Engineer-
ing Seismology, volume 81B, chapter SAC2000: Signal processing and analysis tools for seismologists
and engineers, pages 1613–1614. International Association of Seismology and Physics of the Earth’s
Interior, 2003.

[7] B. Gustafsson, H.-O. Kreiss, and J. Oliger. Time dependent problems and difference methods. Wiley–
Interscience, 1995.

[8] H.-O. Kreiss and N.A. Petersson. Boundary estimates for the elastic wave equation in almost incom-
pressible materials. LLNL-JRML 482152, Lawrence Livermore National Laboratory, 2011. Submitted
to SIAM J. Numer. Anal.

[9] H. Lamb. On the propagation of tremors over the surface of an elastic solid. Phil. Trans. Roy. Soc.
London, Ser. A, 1904.

[10] P. Liu, R. J. Archuleta, and S. H. Hartzell. Prediction of broadband ground-motion time histories:
Hybrid low/high-frequency method with correlated random source parameters. Bulletin of the Seismo-
logical Society of America, 96:2118–2130, 2006.

[11] H. M. Mooney. Some numerical solutions for Lamb’s problem. Bulletin of the Seismological Society
of America, 64, 1974.

[12] S. Nilsson, N.A. Petersson, B. Sjögreen, and H.-O. Kreiss. Stable difference approximations for the
elastic wave equation in second order formulation. SIAM J. Numer. Anal., 45:1902–1936, 2007.

97

[13] N. A. Petersson and B. Sjögreen. Stable and efficient modeling of anelastic attenuation in seismic
wave propagation. LLNL-JRNL 460239, Lawrence Livermore National Laboratory, 2010. To appear
in Comm. Comput. Phys.

[14] N. A. Petersson and B. Sjögreen. Stable grid refinement and singular source discretization for seismic
wave simulations. Comm. Comput. Phys., 8(5):1074–1110, November 2010.

[15] P. Wessel and W. H. F. Smith. New, improved version of generic mapping tools released. In EOS trans.
AGU, volume 79, page 579, 1998.

98

	Introduction
	Getting started
	Running WPP

	Coordinate system, units and the grid
	Geographical coordinates

	Sources, time-functions and grid sizes
	Sources and time-functions in WPP
	Predefined time functions
	Gaussian
	GaussianInt
	Ricker
	RickerInt
	Brune
	BruneSmoothed
	Liu
	Triangle
	Sawtooth
	Ramp
	Smoothwave
	VerySmoothBump
	GuassianWindow

	How fine does the grid need to be?
	Lamb's problem

	The material model
	The block command
	The efile command
	The pfile command
	The ifile command

	Topography
	Gaussian hill topography
	Topography grid file
	Etree topography

	Mesh refinement
	Attenuation
	Viscoelastic modeling

	Output options
	Setting the output directory
	Time-history at a reciever station: the sac command
	2-D cross-sectional data: the image command
	Generating a bird's eye view of the problem domain: the gmt command

	Examples
	Lamb's problem
	Examples from Lifelines project 1A01: Validation of basin response codes
	The LOH.1 problem
	The LOH.2 problem
	The LOH.3 problem

	The Grenoble basin test case
	Modeling the October 2007, Alum Rock earthquake
	A scenario earthquake in the Caucasus region

	Keywords in the input file
	Basic commands
	fileio [optional]
	grid [required]
	time [required]
	source [required]
	prefilter [optional]

	The material model [required]
	attenuation [optional]
	block
	efile
	pfile
	ifile
	material
	globalmaterial [optional]

	Topography and mesh refinement [optional]
	topography [optional]
	refinement [optional]

	Output commands [optional]
	sac [optional]
	image [optional]
	gmt [optional]

	WPP testing commands [optional]
	twilight
	testlamb
	testpointsource

	Advanced simulation controls [optional]
	supergrid [optional]
	boundary_conditions [optional]
	developer [optional]

	File formats
	topography
	pfile
	ifile
	sac
	image

	Installing WPP
	Supported platforms and compilers
	MPI and other third party libraries
	Mac computers
	Linux machines

	Directory structure
	Compiling and Linking WPP (without the cencalvm library)
	How do I setup the make.inc file?

	Installing cencalvm and its supporting libraries

	Testing the WPP installation
	Method of manufactured solutions
	Lamb's problem

